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Importance of precision: the premise
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Importance of precision: the premise
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Particle physics discovery: the types

We are in the phase of no elementary particle
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Discovery through resonance discoveries since the last 12+ years after
resonance (the the Higgs in 2012. What to do then?
tested paradigm)
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500 %-level precision

Possible to see hints of new physics through difference in heights, angular
structure and tails of distributions without seeing the actual resonance 5




Introduction and Motivation (Classical Example)

In simple terms, effective field theories (EFTs) provide a simplified description of a more
fundamental theory by focusing on its low-energy (long-distance) behaviour, effectively
"integrating out” the high-energy details.

e Setup: Consider a uniformly charged line along the z-axis, from x = —% o= % with linear charge density A. Total
charge: @ = AL. The potential at a point on the y-axis (y > L) is:
---------------------- + Expansion: L/
¢(y) B 1 /L/2 Xdip Field Point (y > L) . -
dmeo J_pj2 /22 + 42

e Multipole Expansion: For y > |z|, rewrite /22 + y2 =y, /1 + z—z and expand:

# ~ l - lﬁ 4oeee ], Line Charge ()
VEELgE Y 2y L

o Analogy: This expansion in powers of L/y is analogous to an EFT expansion in powers of E/A. Only the leading
multipole (monopole, etc.) survives at large distances (low energies), just as irrelevant operators are suppressed in an
EFT.




Introduction and Motivation (Classical Example)

o Result: After integration, the potential becomes:

AL e
o) = Ameg y [1_ 24 y? +] ’

where the leading term is the monopole and the next term (proportional to L?/y?) represents the first correction.

o EFT Analogy: In an EFT, high-energy details are encoded in a series expansion in E//A; here the expansion parameter
is L/y.



Introduction and Motivation

What about in particle physics? The story is similar.

e Use energy scale £ ~ L' to define regimes.

e Low-energy experiments (E) don’t require full high-scale (A > F) details.
e High-scale effects are encoded in a finite set of effective parameters.

e This separation of scales enables a practical research program.

e Example: LHC collisions (~ ~ 1TeV) are described by an effective theory.



What are Effective Field Theories

Concept: EFT is a framework that lets us describe low-energy physics
without needing full details of the high-energy dynamics.

Key Principle: Retain only the relevant low-energy degrees of freedom;
the effects of heavy states are encoded in higher-dimensional operators.



Separation of Scales e

LsmprT — RoE

In many systems, there is a clear hierarchy: P ot
|

LierT ROE

E <A, |
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where E is the energy scale of interest and A is the cutoff or new-physics

scale.

. : . el E
This separation allows us to expand physical quantities in powers of *.

10



Decoupling and the Appelquist-Carazzone Theorem

The Appelquist—Carazzone theorem tells us that heavy fields contribute

E n

Thus, for E < A the influence of heavy fields is suppressed.

corrections of the form:

11




Decoupling and Effective Field Theories

Formal EFT Decoupling:

e UV Theory: The full dynamics is given by Lyy (¢, H) with light fields ¢
and heavy fields H.

® At energies F < mpy, experiments involve only ¢ in
external states; the effects of H are encoded in effective parameters.

e QED Example: Photons scatter via virtual electrons. For low-energy
photons (below ete™ threshold), on-shell electrons don’t appear.

e Muon Decay: Proceeds via a virtual W boson since m, < myy, so the
details of the full SM are not required. "

12




Integrating Out Heavy Fields: An Introduction

e UV Theory: The full theory is described by the Lagrangian

Lyv (¢, H),

where ¢ represents light degrees of freedom and H the heavy ones.

e Path Integral Framework: The complete dynamics is encoded in the partition function:
Do s Tot] = / (D] [DH] exp[z' / diz {LUV(qb, H)+Js¢+Jn H}] .

e Effective Theory: At low energies (when E < my ), experiments probe only ¢. By setting Jyg = 0,
we obtain:

Zgrr[Jg] = Zuv|Je, 0], [But is this realistic?]

which defines the effective theory for ¢ with heavy-field effects encoded in effective interactions.

13



Effective Lagrangian and Locality

e Effective Lagrangian: It is defined via

T ldy] = / Do exp[z' / d*z {LEFT(¢) +J, qb}] .

14




Effective Lagrangian and Locality

e Local vs. Non-local Operators:

— A local operator is polynomial in fields and their derivatives, e.g. [lnteraCtion occurs at a single point in spacetime.]
¢*0¢°.
— A non-local operator involves non-polynomial functions of derivatives, e.g. [lntel‘aCtionS are "smeared out" over]

spacetime.
¢* (O + M?)~ 4% P

e Local Expansion & Matching: In general, Non-local operators can arise when heavy degrees pf
freedom are integrated out, capturing their
Less(¢) # Luv (¢, H = 0), | propagation effects at low energies.

unless ¢ and H are completely decoupled. The difference

Less(¢) — Luv(¢,0)

is non-trivial and accounts for the effects of H exchange between the ¢s. For M > E, the heavy
propagator can be expanded as

1 ([l
2\—1

so that heavy-field effects appear as a series of local contact interactions.

+...,

15
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Some Motivations for Using EFTs

e Simplicity: EFTs reduce the complexity of the full theory to a finite set of effective parameters,
capturing the essential low-energy dynamics.

e Calculability: They enable efficient multi-loop computations and resummation of large logarithms
via renormalisation group techniques.

e Model Independence: When the underlying UV theory is unknown or too complicated, EFTs allow
a systematic description of low-energy phenomena by parameterising heavy-field effects.

e Practical Application: For example, describing LHC collisions at £ ~ 1TeV only requires the
effective theory, with the details of higher-scale physics encoded in a limited number of parameters.

16



Infinite Interactions and Power Counting

e Even a local effective Lagrangian Lgrr(¢) contains an infinite number of interaction terms.
e Power counting rules organise these terms into a controlled expansion.

e For relativistic EFTs (obtained by integrating out heavy fields H), the expansion parameter is E/Mpg
(with E the typical experimental energy).

17



Coordinate and Field Rescaling and Lagrangian
Transformation

e Under the rescaling
B —> E:c:“

the integration measure transforms as d*z = ¢* d*z’ and derivatives scale as 8, — 9, /€.

e Energy Interpretation: £ — 0 (fixed z’) implies small z (short distances, high energies), while
& — oo corresponds to large z (long distances, low energies).

o Consider the effective action for a scalar field:

Serr(®) = [ dto (0,07 —m?e —kud® —xt= 3 gm0 ()

n+d>4
e Under z;, — ), it becomes

Cn,d 54_d

Serr(9) = / d'a’ [2(0,9)2 — m? €197 — kpglg? —Aglet = Y T gn N (9)).

n+d>4

e To restore canonical normalisation of the kinetic term, rescale the field as
p—¢'¢,
yielding
Cn, n—
Serr(@) = [ ate' [0,8) ~m*? — k(G ¢° - A#" — ¥ ermamen@)e] )

n+d>4

18
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Canonical Dimensions

e In an interaction term written as

cna n—
otz 9710,
let:

— n = number of fields,

— d = number of derivatives.
e The canonical dimension is D = n + d — 4, which determines the scaling:

— Relevant (D < 0): Coefficients grow in the IR (e.g. ¢? with D = —2, ¢ with D = —1).
— Marginal (D = 0): Coefficients are dimensionless (e.g. ¢%).

— Irrelevant (D > 0): Coefficients are suppressed at low energies (e.g. an operator with n =
3,d=2has D=1).

19



Dimensional Analysis and f Counting

e To derive a general selection rule (counting), temporarily reinsert the Planck constant # (usually set
to 1).

e The action S must have dimension %' since the path integrand is e*/".

e By convention, kinetic terms are not multiplied by any A factors, so each field with a quadratic kinetic
term has dimension A'/2.

n

e Thus, an interaction term with n fields has a coefficient with dimension A'~2 (independent of deriva-
tives).
e For example, in the UV Lagrangian:
- [mZ] = R,
— k has dimension A~ 1/2,

— )X has dimension A1,

= [Cn,d] =hl"%,

20



Fermi Theory as an EFT: Overview

e Concept: Fermi theory illustrates EFT principles by integrating out heavy fields (e.g. W, Z, Higgs,
top) of the SM below the W boson mass.

e Degrees of Freedom: At low energies, only light particles remain—here, we focus on muons, elec-
trons, and their neutrinos.

e Goal: Derive the effective weak interaction Lagrangian for these particles.

21



Muon Decay in the Standard Model of Particle Physics

Process: Consider p~ (p) = e™ (k1) Ue(k2) vu(ks).

SM Interaction: The charged current interaction is given by:

_ 9L (5 - - = +
Lsy = E(Vﬂ,op,u+ueape)wp + h.c.

Here, o# are defined by

=1 &=-0 (i=1,23),

where o are the Pauli matrices. Weak interaction
e Amplitude: The muon decay amplitude is [LH Weyl spinor COUP|E§ to LH (RH)
, (anti-)fields
1
M = %53(/%) 0, %(p) — >~ o(k1) 0o y(k2), q=p—ks.
q= — My,

Because ¢ < m” < mj, one approximates: [RH Weyl spinor|

M = (k) 3, 0)] [a(lr) o, )] [1-+ O ).

22
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Matching to the Fermi EFT

e Effective Lagrangian: At low energies, the W boson is integrated out, leading to a 4-fermion inter-
action: .
LerT D A2 (0,0, 1)(€T,ve) + hc.

e Matching: Reproducing the SM amplitude in the limit ¢? < m%v requires
A = Mw, C= ——.

e Validity: This EFT describes all charged current processes (like muon decay) at energies £ < myy.
At higher energies, the EFT fails to reproduce the full SM behavior.

[We will discuss the validity of EFTS in the next Iecture.]

23



Example: Toy UV Theory and EFT Lagrangian

UV Lagrangian:
Consider a light real scalar field ¢ (mass my) and a heavy field H (mass M). The UV Lagrangian is:

Ao
4!

.

Lov = 3 [(0u) ~ myd + (0,H)” ~ M?H?) - :

A
¢4 M¢2H—Zz¢2H2
Notes:
e Heavy scale M is factored out in the trilinear term.
e A Zs symmetry ¢ — —¢ is imposed, so odd powers of ¢ do not appear.

e H? and H* interactions are neglected (they can be generated by loops).

EFT Lagrangian (for E < M):
After integrating out H, the EFT Lagrangian is assumed to be

_ 1 2 2,2 ¢*  Ces ¢° _4
[:EFT—E[(a”(ﬁ) —m¢]—04z—ma+O(M )
Interaction terms are organised as an expansion in inverse powers of M, with each operator O, of canonical dimension
d. Only operators with an even number of ¢s appear by virtue of the Zs symmetry.



Example: Toy UV Theory and EFT Lagrangian (Concept of Basis)

Additional Operators at O(M ~2):

One could also write operators such as
Os = (O6)?, Os = ¢°0¢, Of = ¢*0¢%, OF = ¢* 8,4 0"¢.

Redundancy via Integration by Parts:

¢ One can show that

¢°(0u9)” = —§¢3D¢, $*0¢° = §¢3m¢. [H.W.: Show these explicitly!]

« Thus, O} and Of are not independent.
Field Redefinitions and Equivalence:

 Using the classical equations of motion (EOM), one may eliminate Og and Og in favour of the operator already
present in the EFT.

o Shifting the Lagrangian by terms proportional to the EOM does not affect the S-matrix (the equivalence
theorem).

o For example, going from the unbox basis to the box basis corresponds to a field redefinition:

6-4(1- 365%):  [H.W.: Show this!

25
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Example: Toy UV Theory and EFT Lagrangian

EOM and Operator Relation:
The classical equation of motion for ¢ (ignoring O(M ~2) corrections) is
g Cy 5 _ —~2
O¢ +m°¢ + F(b =0O(M™*).
Using the EOM, one can show that

2? =" e

#5 +O(M™Y).

Thus, the operator Og = ¢3¢ has the same effect on on-shell amplitudes as a particular combination of the ¢* and
¢S interactions already present.

Alternate EFT Lagrangians: One may also write the EFT as
¢*  Ce
41 41M2

These two forms — the unbox basis and the box basis — are equivalent on-shell, with the coefficients related by:

Lorr = 5[@u)? —m?] - Cu #'06 -+ OM %)

2 . .
G =y — 5%2_2 Cﬁ=_50_(i_ [Translatlon between bases]

Homework Task: Explain why field redefinitions, such as the one above, do not affect physical S-matrix elements

(hint: review the equivalence theorem). [ywell-behaved ﬁe'd redeﬁnitions

26




Example: Toy UV Theory and EFT Lagrangian (Tree-Level Matching)

At tree level, requiring the same propagator in the UV theory and the EFT gives

2 _ .2
m- = mL- LUV _ %[(au¢)2_m%¢2+(auH)2 —M2H2] _ z_(!)¢4_ %M(ﬁzH— %¢2H2
2-to-2 Scattering in the UV Theory: L _1 9. 6)2 242 _ ¢ ¢*  Cs ¢° O(M~-4
EFT—§[( .$) —m¢]— s e T (M™F)
The process ¢¢ — ¢ receives contributions from:
o The contact ¢* interaction. " o o 7 o o
% s N 4 . > RN /
e s-, t-, and u-channel exchange of the heavy field H. AN N oy A o
. e . 4 >< N 4 N 7 7 /\\
The resulting amplitude is A T N - - \
@ e @ e @ ¢ @
1 1 1
77 =X - AM? ;
Mi T MM ST Y o Ty e

For s,t,u < M?, expanding gives

)\2
MYV ~ X+ 322 + Vg(s+t+u) +O(M™).

Since s + t +u = 4m2, we have
4m2 N2
M2

MYV ~ 2o +3X2 + +O(M™4).

27



Example: Toy UV Theory and EFT Lagrangian (Tree-Level Matching)

° @
EFT Amplitude: N A
In the EFT (unbox basis), only the contact diagram contributes: //. N
MPFT = —Cy. ® ®
Matching MEFT = MYV + O(M~2) then yields:
Matching Summary: Matching tools: CoDEx, Matchete,

The tree-level matching conditions up to O(M~2) are: Matchmakereft

m2=m2, Ci=X—3)\2—4\2 L

and (from a lengthy 6-point matching)

H.W.: What about Cs = 45225 — 20002 + 6071 [H.W.: Try this out!]
the box basis? Try!

What about matching at one-loop? 28
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Limitations of the Standard Model of Particle Physics

e The Standard Model (SM): A theory of quarks and leptons interacting via strong, weak, and
electromagnetic forces. It is valid up to very high energies and has passed countless experimental tests.

e Limitations: Despite its success, the SM does not explain dark matter, neutrino masses, mat-
ter—antimatter asymmetry, or cosmic inflation. Theoretical issues (e.g. strong CP problem, flavour
hierarchies, unification) further suggest that the SM is incomplete.

29



Model theistic versus Model agnostic (EFT) approaches

No direct hints towards new physics explaining the various observations
which require physics beyond the Standard Model.

No consensus. Every model comes with additional baggage which needs to
be discovered.

Is new physics hiding somewhere that we are obviously missing?

Is the reach just above the present experimental reach?

Theories of
Dark Matter

Are the interactions with Standard Model particles extremely feeble?

Are the theoretical and experimental precisions not good enough?

Image: Tim Tait "
& The EFT picture
Imprints of new physics could show up as tiny deviations in ...is reinforced by the current U V
. i experimental situation [ultraviolet]
standard measurements —» Hint towards new physics? Nage: Admir Greljo j o
= Renormalisation
. . . . . e . . e flow
Theory precision is thus crucial to minimise uncertainties. - rd=1 Z Z Ci_oyd
T TSM Ad—4 71 IR
d>5 i [infrared] 30




EFT Approach and Motivation for SMEFT

Beyond the SM: New particles and interactions are strongly motivated but—so far—no direct or
indirect collider signals have been observed.

Effective Field Theory (EFT): If new particles are much heavier than the weak scale, they can be
integrated out. Their effects are then captured by adding higher-dimensional operators to the SM.

SMEFT Framework: SMEFT extends the SM by including all gauge-invariant operators built from
SM fields (with the same SU(3)xSU(2)xU(1) symmetry), organised in a series expansion:

_ 1 (5) () , 1 (6) n(6) , 1 (7) n(7)
ESMEFT—‘CSM‘FK;% Oi +F;ci Oi +F;Ci Oi + -

The expansion is valid when v < A, with A representing the mass scale of the new particles.

31




Dimension-5 (Weinberg) Operators and Neutrino Masses

L;
e Dimension-5 Operator: The unique D = 5 operator in SMEFT is 7 !
[Os1s = (ei; H'LY)(ei H' LY), )
where I, J = 1,2, 3 are flavour indices and ¢;; is the antisymmetric tensor. L R B

e Lepton Number Violation: This operator violates lepton number (and B — L), leading to Majorana,

masses. |Homework exercise! |
e After EWSB: When the Higgs gets a VEV v, the operator generates a neutrino mass term:

1 v2
K [05]IJ [OS]IJ = ﬁ [C5]IJ vrvy.

o Given neutrino masses < €V and at least one > 0.06 ¢V, we deduce A/c5 > 10> GeV. This implies
that dimension-5 effects are tiny (except in neutrino oscillations), while dimension-6 operators provide
the leading corrections at the weak scale.

[What if the neutrinos are Dirac particles? Will SMEFT suffice?] .




Overview of EFT Applications and Approaches

EFT as a Framework:
e EFT techniques are widely applied in high-energy physics.

e They provide a systematic expansion of the Lagrangian by organising operators according to symmetry and
energy scale.

UV Completion vs. EFT:
e When UV completion is known: (e.g. Fermi, xPT, Einstein-Hilbert)
— EFT Wilson coefficients may be calculable (Fermi, EH) or not (xPT).

— Calculable coefficients may appear at tree level (Fermi) or only at loop level (EH).
e When UV completion is not known: (e.g. SMEFT)

— The degrees of freedom may be fundamental (Fermi, EH), emergent (xPT), or unknown (SMEFT).

33



Overview of EFT Applications and Approaches

Benefits of EFT:

e Systematic expansion based on symmetries leads to increased calculability and simplification.

o Even with limitations in each case, organising the Lagrangian helps extract meaningful low-energy predictions.
Additional Applications:

e HQT: For composite particles with one heavy quark (e.g. B mesons).

e SCET: For QCD collisions producing energetic jets.

e NRQED: For precision calculations of atomic spectra.

34



Motivation and the Two New Physics Scales

@ Motivation: Although the SM is highly successful, it does not explain neutrino masses, dark
matter, or the matter—antimatter asymmetry. New physics is therefore expected at scales A > v
(with v = 246 GeV).

e Two New Physics Scales:

o A, is the scale for odd-dimensional operators (e.g. dimension-5), which violate B — L. Experimental
constraints from neutrino masses suggest A, ~ 10™ GeV.

o A is the scale for even-dimensional operators (e.g. dimension-6). This scale may be much lower,
possibly in the few-TeV range, making these effects accessible at current or future experiments.

@ The assumed hierarchy
v A and A’ < vAL

ensures that the EFT expansion converges quickly and that the leading new physics contributions
at low energies come from dimension-6 operators.

35



SMEFT Lagrangian and New Physics Scales

The SMEFT Lagrangian is written as:
_ 1 (5) () , 1 (6) 1 (6)
LsmerT = Lsm + A, E,- ¢;’ O + 2 E,- g O

1 M) A1, 1 (8) 1 (8)
+/\_izcl Oi +FZC’ Oi +"'

Key Points:

@ Lgw is the Standard Model Lagrangian.
@ Each operator O,(D) is a gauge-invariant combination of SM fields with canonical dimension D.

e The Wilson coefficients ¢?

-7 are dimensionless.

@ A, and A are interpreted as the characteristic mass scales of the UV completion; the former is
associated with operators that violate B — L (and are hence highly suppressed), while the latter
governs the leading new-physics effects.

36



SMEFT @ D=6

Motivation:

The importance of dimension-6 operators for characterising low-energy effects of heavy particles
has been recognised long ago.

More recently, advantages of using a complete and non-redundant set of operators have been
emphasised.
Seemingly different higher-dimensional operators may yield identical S-matrix elements if they are
related by:

o Equations of motion (EOM),
o Integration by parts (IBP),
o Field redefinitions, or
o Fierz transformations.

Removing redundant operators simplifies the EFT description and yields an unambiguous map from
observables to EFT Wilson coefficients.

There exist infinitely many equivalent bases; common examples for D=6 include the Warsaw basis
and the SILH basis.

37



Construction of a Basis

@ Starting from all distinct D=6 operators that can be constructed from SM fields, many are
redundant since they are equivalent to linear combinations of others.

@ For example, a complete basis for one generation was constructed only a few years ago and later
extended to three generations; the resulting Warsaw basis has 2499 independent parameters.

@ The redundant operators can be removed (using IBP, EOM, etc.), and any complete basis (e.g.
Warsaw, SILH) yields equivalent physical predictions.

@ More systematic methods (e.g. Hilbert series techniques) can be used to construct such a basis.

38



The Warsaw Basis

(RR)(RR) (LL)(RR)
Bosonic CP-even Bosonic CP-odd Oce | n(e°0,e%)(e°0,,E%) Ore (£5,0)(e°0,€°) Yukawe
C €\ (a/Crr 77C )~ Cpr 7€ [OzH]IJ HfHe?er_]
0 (HTH)3 O n(uo,u®)(uo,u) Ogy (la,0)(u¢o,uc) N
" 0 (0,0 (d 0, ) 0 ({5,0)(d0,u) [Ouglas | HUHGHlas
o o, G, o,d°
Opn | (HTH)O(HTH) il B g “ " s (Ol | HiHASHTq,
0 |HTD I 2 Oeu (e°0,.8%) (u¢o,uc) Ocq (e°0,€°)(70,.q)
i u | ~ Oea (e°0,8°)(d°a,d%) Oqu (q5,q) (uo,uc) Vertex Dipole
Onc H'H Gy, Gy, Ona H'H G}, G, Oua (uo,u%) (d°,d°) oY) | (qo,T°q) (ufo, T"u) Oudis | ity HDLH (Ol | 5o HG "W},
i i = ; _ _ () 7ol i & c
Onw | HHW.,Wj, Oy | HHWW, 0% | (weo,Tw)(d°0, T°d)  Op |  (70,)(d°0,d) (Oilis | itio %ZJHTUF Dt [O:B]IJ eIUuVHieJBw
~ B Oe ico, e HTD H (o) 1 UTaH’f Gau
Onp | H'H BBy Oup | HUH BB O | @ ra o redy O e Oy Buclis | o5 02 5
iy _ P Oty | i@rouasH DuH Olwlis | wou Hrolq, W,
i i ~ i i . ) y e
Ogwp | H'o HW#,,B,“, OHWB H'o HWHVBMV (LL)(LL) (LR)(LR) [Og(),]u iqmz(—quHtgzﬁ;H [OLB]IJ W07 B
ijkywi Wi wk e ik Wl oWk - — ‘ Oina o atHI D H ot Ao, TOH g, GO
Ow | WL Wi W, O | €7 W WoWp, Ou | nila,0)l5,0) Ouat | () esu(dg") { y i e [[ fG]]” e T
Oc fabeGa Gb G 0= fabcéa Gt e o ® S Ondlry | idjo,djH' D, H Ogwlrr | dioHlo'qr W,
e ¢ e O n(qu,q)(qaﬂq)_ O | (4 Ti'q el ET°7) [Onudl1s | iu§o,dSHD,H [Olplrs | dfouHTq By
O:;q n(‘j&ufﬂQ) (qﬁuUZQ) Otequ @ éc)ejk( Akﬁc)

i (5,0)(q5 O | (5,8 (EFH Ul :
Bosonic operators O | ((0u0)(350) Ofons | (05,8 @5 ) [Two-fermlon Operators]

0y, | (l6,0'0)(q0,0%q) Otedq (fe°)(dq)

[Four-Fermi Operators|
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The Warsaw Basis

(RR)(RR) (LL)(RR)

Bosonic CP-even Bosonic CP-odd Oce n(e‘o.e)(eco,e°) Oe (l6,0)(e°0,e°)

Oy (HTH)S Ouu n(uo,u®)(uo,u) Opu (E_?f“@)(ucauﬂc)

0 0, d°)(dode 0 U,0)(d°0,de

Ouo | (HUH)O(HTH) aa | n(d°0,d®)(d°o,d) ta (lot)(do,de)

0 |HTD H|2 Oeu (e°0,e°) (u0,u) Oeq (€0,€°)(70,q)

o ; e - Oca (e°0,,€%)(d 0, d°) Oqu (q0,.9) (uo,u)
Onc | H'H GGy Opg | H'HGLGL Ow | (o,)do,d) O | (q0,T7) (o, T%)

Onw | H'HW,Wj, Oy | HHWLW,, 0% | (o, Toa)(do, T°d%) O | (35,9)(d°0,d")

Yukawa
(Of ]y | HTHeGH
(Ol | HT HuGH g,
[Olylis | HTHdSHq;
Vertex Dipole
[Onelr izlﬁuéJHTS;H Olyles | esowHIa W,
091y | ifro's, b Ho Dy H Olgls | €§owH B,

ioen zC HTTY B

.. 1.,

il TaHTa, (a

it 1.,

Two-fermion D = 6 operators: Flavour indices are denoted by /,.J. For
complex operators (0%, Yukawa, and dipole terms), the complex conjugate is

implicitly included.

Four-fermion D = 6 operators: Flavour indices are suppressed for clarity.
The factor 7 = 1/2 when all indices are identical (e.g., [Occ|1111), otherwise
n = 1. Complex operators include their conjugates in the Lagrangian, with

complex Wilson coefficients.
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Construction of a Basis 4 0B, — )

2 ue
Example Operator: T ’r (O,W,, + €*gWiW} ) = DW;, = —§gLHng'§;H — 9Lip
' p

Oup = (HTH) DuHIDHH. | o ey o ) — i = g
Step 1: Integration by Parts (IBP) \_ O = uqu—2)\(HTH)—jy
By integrating by parts, we rewrite

1 ¥ = Yifo,f + Yiefo,f°
hp = 5 HTHO(HH) - H'H (H'D,D"H + D,D*H H)].| 7 fe%;u’d - f;e’;d "

Step 2: Apply the Higgs EOM I = q&u%quZ&#%e,

Using the leading-order Higgs equation of motion (neglecting O(M~2) corrections),\ Jji = @0,7"q +u‘0,T*a" + d°c,T"d",
2
O(H'H) — —HH(HTH) +2X(HTHY +..., H'D.H = H'D,H - D,H'H,
—uYLq + dyYaq + yel, Gi = €i;0;

Ju
1 1
ho = —H{HH)? + Z(HTH)D(HH) + 2X (HTH)® + S(HTH) [~ v G+ d° ya g + c“ ye L+ hec -

11t

the operator becomes

Conclusion:
@ All operators on the right-hand side are in the Warsaw basis.
e Thus, Oyp is redundant—it can be written as a specific linear combination of Warsaw basis ops.
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Motivation and Example - Heavy Neutral Vector Boson

Motivation:
@ We use dimension-6 operators as a prop to parametrise the effects of heavy BSM particles on
weak-scale observables.
@ Suppose one day it is demonstrated that a linear combination of higher-dimensional operators must
be present in the SM EFT Lagrangian to account for all experimental results. What will this tell us
about the new physics?

@ The best way to answer is through examples that relate dimension-6 operators to the couplings and
masses in BSM models.

Example 1 (Fermi-like):

Consider a heavy neutral vector boson V), with mass My coupled to SM fermionic currents:

Lyv DV, <ng,L fGHf + gxr R I 0“7_2)-
For energies well below M\, the momentum dependence in the V' propagator can be ignored, effectively
leading to a contact interaction:

_ N2
Lerr D — (gi,L fotf + gvrrfc U“fc) -

&
M2
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Motivation and Example - Heavy Neutral Vector Boson

Implications for New Physics:
o If experimental data require the presence of certain dimension-6 operators in the SM EFT, this

provides indirect evidence for heavy BSM particles.
@ The Wilson coefficients, being proportional to the ratio of BSM couplings and masses, can be used

to set an upper limit on the new physics mass scale.
@ For instance, in Example 1, the matching condition
Crf, _ _ Bvh BX Experiments only

A2 M, probe c/A?

Upper-limit on A comes from the fact that
the couplings can’t be larger than 4!
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Some Clarifications

(i) Basis Independence:

Al possible dimension 6

A complete, non-redundant operator basis at a fixed mass dimension forms a vector space whose BT .
dimension is invariant under an invertible change of basis. In other words, while the form of operators
may differ (e.g. Warsaw vs SILH), the number of independent operators remains the same.

(ii) Hilbert Series Method and SMEFT Counting: Arrows depict relations among the

classes based on the equations of
motion (EOMs) of various elds.

The Hilbert series is a generating function

(WARSAW] 1
~[7xol”

L (B, g (Up Wp)
L)@ i @) + i (¥, ¥)(@' i T @)
1iD, #)(D, X*)
5 (', @)@ i @)
0 UL Vg 9D

O
H(t)=> ant",
n=0

where the formal variable t tracks the weight (e.g. mass dimension) and a, counts the number of
independent, gauge-invariant operators of that weight. This method utilises the plethystic exponential
and Molien-Weyl integrals to systematically account for all invariants and redundancies. In SMEFT,
such techniques have been used to count operators—for instance, in the Warsaw basis for dimension-6
operators with three generations, one finds 2499 independent parameters.

Banerjee, et al.

More details on Hilbert series in the backup slides
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https://arxiv.org/abs/2008.11512

Some Clarifications

(iii) Partition Function and Field Redefinitions:

The partition function
7= / D 19,

remains invariant (up to an overall factor) under local, invertible field redefinitions. Thus, physical
observables (the S-matrix) remain unchanged even if the Lagrangian appears different.

(iv) Equations of Motion in EFT:

In matching EFTs to UV theories, the classical equations of motion (derived via the Euler—Lagrange
equation) are typically obtained from the leading (renormalisable) Lagrangian. Higher-dimensional
operators are subleading in the 1/A expansion and are usually omitted when deriving the EOM used to
remove redundant operators.
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From Operators to Observables

@ To study the phenomenological effects of higher-dimensional
operators in the SM EFT, it is often convenient to work with the
mass eigenstates (after electroweak symmetry breaking) rather than
with the full SU(3)xSU(2)xU(1) invariant formulation.

@ Higher-dimensional operators lead to deviations from the SM in two
main ways:

@ Modified Couplings — corrections to the strength of SM-like
Interactions.

© New Vertices — additional interaction terms that do not exist in the
SM Lagrangian.
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From Operators to Observables
@ Consider the operator
Ohe = i€c 0, & (H'D,H — DHH).

@ Inserting the Higgs vacuum expectation value (VEV) leads to a
coupling of the Z boson to right-handed electrons:

CHe gE_l_g\z/Vz
S s ——

N2 22

@ In the SM, the Z-boson coupling to a fermion is given by

gzr = 1\/ 8] +g$,(T3 — 55 Qf),

so for the right-handed electron (with T3 = 0):

8Ze = \/ng'i‘g\z/Sg-

CHe

Z,e.oté..
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From Operators to Observables
@ The effect of Oy, is to shift the coupling by

CHe\/ gE + g\2/ V2

AgZe - - 2/\2

@ The same operator Oy also generates a vertex that is absent in the

SM:
5 5 Leads to
CHe CHe\/8[ + 8y V b= correlations
_/\2 OHe — — N2 h Zp € 0" €. between various

observables!

@ This new vertex (involving the Higgs boson h, the Z boson, and
right-handed electrons) affects amplitudes for Higgs processes. For
example, it modifies the decay width and differential distributions in
the Higgs decay to 4 leptons, which is studied at the LHC.
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From Operators to Observables

@ The effective Lagrangian for the Higgs boson h can be written as

1 5 m,2, 5 m,2, v2 3 v ,u
L5 5(9uh)2 = Z2h —E(l—kélﬁ)h — G275 hOuh O h+ ..

@ Here, the d;-term modifies the SM triple Higgs coupling, and the
do-term is a new two-derivative interaction.

@ By redefining the Higgs field as

Y 12
h—)h+(52mh,
the Lagrangian becomes
1 m? m? v2
S(0uh)? = TR = TR (14 (61 + 62) 15 )P+
L2 5(0uh)” = = oy \1 1 (01+02) 15 ) h° +

@ By the equivalence theorem, this redefinition does not change
physical observables. 49
e —



From Operators to Observables

@ In the SM the electroweak parameters g;, gy and v are determined
from three precisely measured observables:

© The Fermi constant: /2Gg = %

2 .2
- . . _ 8L 8y
@ The electromagnetic fine structure constant: a = ;—L7 >y (& +82)"
© The Z-boson mass: m% = M

@ Higher-dimensional operators can shlft these relations. For example,
the operator

C”D IH'D, H?
contributes after electroweak symmetry breaking as Chec.k.these
, 2) , explicitly!
2
CHD + 2 _, CHDV (8i +8v)v
H'D,H Z,7".
I | 2/\2 8 2
) Additionally, one obtains a shift in the W boson mass:
5m%v _ CHD gE V2
2m?, 4(g? — g2 ) \? 50



From Operators to Observables

@ The Z boson mass is measured at LEP with high precision:
m%® = 91.1876 + 0.0021 GeV.

@ Since myz is used to extract g;, gy and v, the contribution from Opyp
complicates this determination.

@ Assuming Opyp is the only higher-dimensional operator present, the
constraint on its Wilson coefficient is:

cup —1.240.9 [A detailed J

[Check this!]

Vi (10TeV)2 example i.n the
backup slides!
@ This indicates that electroweak precision measurements can probe
weakly coupled new physics at scales ~ 10 TeV, and strongly coupled
new physics at scales up to ~ 100 TeV.
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Toy UV Theory: One-Loop Matching of 2-Point Function

@ Tree-Level: 1PI 1 . X
Lov = 5[08) — mid? + @uH)? - M?H?] - 06" = LM 9 H - J2¢*H?
EFT _ 2 2 vv _ 2 2
I-IO =p —m, rlo =p —m. ﬁEFT=%[(6u¢)2—m2¢2]—04?;—?—%%T+O(M—4)

@ Loop Corrections: In dimensional regularisation the EFT one-loop
correction reads

/(ﬁ H \/‘\}(p y
2 2 oy
EFT _ m- |1 - s s _,Q,_ R
oll —C4wlg+|0g(m2)+1] ® o » @ " ? @ 5 » o Z; [
with
1 1
Z=-tEt log(4).

e Basis Dependence: Two bases are considered:
e Unbox basis: No wave-function renormalisation.
o Box basis: Includes off-shell momentum (p?) dependence and

non-trivial wave-function renormalisation.
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Toy UV Theory: One-Loop Matching of 2-Point Function

@ MS Prescription: Simply subtract the 1/€ pole to render amplitudes
finite.

@ Renormalisation Scale: The scale u is introduced by dimensional
regularisation and the Lagrangian mass parameter becomes
u-dependent.

o Physical Mass: Defined as the pole of M(p?),

2 2
m T
mghys = m2 — C4 327I'2 [log(p) i 1:| .

@ RG Equation: To keep physical observables u-independent, the mass
must satisfy

dm2 . C4 m2
dlogp 1672 °
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Toy UV Theory: One-Loop Matching of 2-Point Function

@ UV Propagator Correction: For the light scalar in the UV theory,
the one-loop corrected physical mass is [ s o m%]
Cy=A—3X2 —4ax? L

1M2
2 2 2
2 9 2 oMy \ my Y
Mohys = ML — ()\0—3)\1—4)\1M2) 3072 [In(mz) +1]

L ([~ [M2A2 232) + 202 4+ 422 L
n (A2 +2A7) +2AIm] + 1M2

- 3272 m?
1o 22, m?
e [M (A3 +2)7) +33mi + 3 /\le]

@ Key Point: The UV theory has different mass parameters and
couplings, leading to extra contributions compared to the EFT.
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Toy UV Theory: One-Loop Matching of 2-Point Function

@ Matching Condition: By equating the physical masses computed in
the EFT and UV theories, one obtains:

1 4
m? () = mi (i) — 302 @ [Mz(A +202) +2X2m? + 4X? M2]
b 4

1 2 ¥ 22 2m,_
e [M (02 + 2X2) % 3)\lm,_—|- 3’\1/\/12]’

@ Choice of Matching Scale: Setting 1 ~ M cancels Ié‘rge logarithms,
thus preserving the validity of the perturbative expansion.
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Toy UV Theory: One-Loop Matching of 2-Point Function

o Dimensional Regularisation: Regularises loop integrals by working
in d = 4 — € dimensions.

@ MS Scheme: Simplifies renormalisation by subtracting the universal
1/€ term.

@ EFT vs. UV: EFT loop corrections are matched to the UV theory to
define scale-dependent mass parameters consistently.

e Naturalness and Matching: The matching condition reveals how
UV parameters determine the EFT mass, with the natural scale being
m? ~ M?/(1672). Careful matching (with u ~ M) avoids large
logarithms and ensures robust perturbative calculations.
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Toy UV Theory: RG Equations in the EFT (Unbox Basis)

@ To ensure that physical observables (e.g. the physical mass and
S-matrix elements) remain independent of the renormalisation scale
i, the EFT parameters run with pu.

@ In the unbox basis the one-loop RG equations are:

N

g
2 2 Comes from one-loop
dum _ | matching of 2-point function.
diny 1672 \ J
dC, 1 m2 Comes from one-Ioop\
Tnu =~ 1672 3G+ 2 Co|. matching of 4-point
nH T function. )

o The O(MP°) term reproduces the standard ¢* theory, while the
O(M~2) term shows the effect of the dimension-6 operator.

@ In general, at one loop the Wilson coefficients of higher-dimensional
operators affect the running of lower-dimensional ones when explicit
mass scales are present.




Toy UV Theory: RG Equations in the EFT (Unbox Basis)

@ Solving the first RG equation at one-loop yields
Ca

m () = m*(M) (42) ™7 .

@ For small logarithms, i.e. when 16 —In(u/M) < 1, this can be
approximated by

m? (1) ~ m?(M) [1+ 16C; In (%)]

e This modification of the naive scaling m? ~ M? is due to the

anomalous dimension C;/(1672).

af = efl8a ~ 1 4 eloga
For C’41n < 1672

@ The RG evolution re-sums large logarithms from the UV theory into
the EFT parameters, ensuring consistency between the EFT and the

full theory even when C4 In(u/M) becomes sizable. .
5



SMEFT-UV matching: the dataset

- Di-boson

Cic

Cw
c?;-ﬂnlgg; CHWBEWH?) Cu
Cinr Cue Chpl i)
Cue Ci) C) Cru Ca
C-u Cunm
The sectors ot Con -

Cc Cup Chw

Observables no. of measurements References 2020
Electroweak Precision Observables (EWPO)
Tz 00 4 RY. A A (SLD), Alp, sin®0! (Tev), 15 tab. 1 of ref. [168] 7
R2= A A?«‘B' R},]y Ay, A’;‘Bv mw, Tw correlations in ref. [1] v
LEP-2 WW data 74 tabs. 12-15 of ref. [2] v
Higgs Data
ATLAS & CMS combination 20 tab. 8 of ref. [3] v
7 and 8 TeV ATLAS & CMS combination p(h — juy) 1 tab. 13 of ref. [3] v
Run-I data ATLAS p(h — Z7) 1 fig. 1 of ref. [4] 7
pu(h = Z7) at 139 fb~! 1 [5] v
u(h = pp) at 139 fb~! 1 [6] v
13 TeV ATLAS
Run-II data u(h = 77) at 139 fb~! 4 fig. 14 of ref. [7]
ju(h = bb) in VBF and ttH at 139 fb~! 141 [8,9]
STXS Higgs combination 25 figs. 20/21 of ref. [169) v
STXS h — yy/ZZ/bb at 139 fb~! 42 figs. 1 and 2 of ref. [10]
STXS h — WW in ggF, VBF at 139 fb~! 11 figs. 12 and 14 of ref. [11]

single Higgs
CMS combination at up to 137 fb~! 23 tab. 4 of ref. [12] v
u(h = bb) in Vh at 35.9/41.5 fb~! 2 entries from tab. 4 of ref. [12]
p(h = WW) in ggF at 137 fb~! it [13]
13 TeV CMS p(h — pp) at 137 b1 4 fig. 11 of ref. [14]
Run-II data p(h = 77/WW) in tth at 137 ! 3 fig. 14 of ref. [15]
STXS h — WW at 137 b~ in Vh 4 tab. 9 of ref. [16]
STXS h — 77 at 137 fb™" 11 figs. 11/12 of ref. [17]
STXS h — vy at 137 fb~! 27 tab. 13 and fig. 21 of ref. [18]
STXS h — ZZ at 137 fb~! 18 tab. 6 and fig. 15 of ref. [19]
ATLAS WZ 13 TeV m}'Z at 36.1 fb~! 6 bins fig. 4(c) of ref. [20] v
ATLAS Zjj 13 TeV A¢j; at 139 bt 12 bins fig. 7(d) of ref. [21] v
ATLAS WW 13 TeV pf} at 36.1 fb~! 7 bins bins 8-14 of fig. 7(a) of ref. [22] | Vv
Di-Higgs signal strengths ATLAS & CMS 13 TeV data
6 [23-28)
K 1T iy
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Fitting the gauge-Higgs sector: The fits

0.4
. 95% Credible Intervals

( D'_gsvson ) . Global Fits
(7 Di-Higgs EWPO <
Gty ggH Cows Crp Cu 0.2y Al
c Co. D o® — [ ’ HE ,
ANEEE : e
Cua el 8 Cou Cma ST HE ey il HH 1k HE H.!
ol |
CcH Corr \ J B = 0 B 1
Cic Cc Cup Chw -0.2
single Higgs

EWPO
o R R o S A o ¢®

1.0
95% Credible Intervals

Global Fits

N

0.5-

R

hi ‘ | s This Analysis wesm W/O WBF STXS
! |

AL

T3 L W/O VhSTXS mEm W/OggFSTXS'
Bosonic ‘ Yukawa ‘ ) ) L )

AN SIS S NN A R SN O N L ¢ SN SN ©
N Q \QQ N N \ \ 60
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Top down + Bottom up: 2HDM Lagrangian (example)
The 2HDM Lagrangian (Hz = (1¢, 21, —3 )
Lny = LI5 + [D Ml — i, [Hal? — 222 (4ol — (g 7 + e, [Ha?) (H s + ML)
= Nt 2 [Ha [ = Mgy ol HHa 2 = Mgy 3 | (HH2)? + (HLH)?|

~ ~

- {Y’)(iez)zL Haer + Y’;ELZ)qL Hour + Y?i?aL Hodpr + h.C.} .

2HDM contains an extra isospin-doublet scalar (H,) which is a

1

colour-singlet with hypercharge Y = —5.
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Top down + Bottom up: 2HDM
couplings + SMEFT W(s

[37 operators generated at scale A!

[arXiv:2111.05876: Anisha, Bakshi, SB, Biekdtter, Chakrabortty, Patra,
Spannowsky, 2021]

Functions of SM parameters only except the

mass scale

Functions of 2HDM parameters

Do not affect current set of observables

Dim-6 Ops. Wilson coefficients || Dim-6 Ops. Wilson coefficients
WL YSM Snpm, YSM auYyD o a%
Qan TonZmZ, ~ l6x?m3, | m3, 576072mZ,
d d: d; 4
B, VY 3nmdaga VY mug Auga Vel Qe ey
- 2 Tind - < = 19207 2m’
327 'rnN2 & 167 'rrz..){2 @ 167 'rnN2 M.
2 SM
MM 2Ya 3 Mep 2 Ve | My Va Qnu T
An2m3, 1672m?2 19272m32, H.
o @ 2 s e ) g
9w
SnHAMy 3V, | Mg .aYa Qm ~ 102022
8n2mZ, 48n2mZ, - .
(e) (3) N -
o nyYSM 3nmna, YSM nn Yy Quq 1920w2m32,
eH T6w7m?Z, 167%m?, m’ N
P 2y e (e) Q —_Sw___
_3nmAn, Yy 3N, 1Yoy 30Hp Mg 1Y W 5760m2m32,
;o Tz Tz
3272mZ, - 16m2m3, “ 167%mZ, a 4 - o
MH A, 2V, 303y Mg, 2 Y5 i 768072m3, 7680m2m3,
4n?m?Z, T T 16n2m2, + z
Ha Hy Qua® gy
Snpdag aYss) | A% ud 1320m2mZ,
872m3, * 2 Q® _ g =
u. q 22
B v 38407%m%,
uH
m 3 g
ol ey Qaa® ~ Tegontmy,
17 AHp,1 Y5y -
16m2m?Z 16m2m? _ g
Ha @ a2y Qaa 17280n2m7,
MHANH,2V3 3y MMy 2V, Mg.2Vu 4
- 2m2, 2m2 2m2, 9y
inZm3, 1672m3, 192m2mZ, (7 70 -~ T,
22, 3¥SM  Bng s, aYsyy, -
Ly TR % s e
487%m3, 8n2mZ, Qee 192072m3,
)
Q 30 A + 17”2 ASM 772 4
H 32n%m3 16m%m3 m3 Qe A
4 Ha sw‘x”z Ho _— 144072m3,
3nF AH,,1 3nH Ny NET BNHNMHYAHY,1 7
= 2,2 == 2m2 2m2 L, Y
Amtma Brimis, 8mimiey Quu 1320m°m3,
13} Amg.2 | 3nHMHY A, 2 Mg 3
~ T6nZm2 Br2ma = IBrZmE Y
] Sty T My T Qu 28802 m3,_
> AE M2 MpatHa 2 My T
ey e BT, g 9y
J 967 s 32#5';",7;2 327:3 i, Qi e
TEAHg,3 | MH Mg3 My.2
T T Ty o
H e gt Qud = 7
2, 2 A 2 576072m3,
Mg Mps Ay 2N 8 =
S ey ek e 1 9y
8n2mZ, § nZm32, QqqV ~ Gotontml,
X
e SW o 30 e SHEL 2 o2
Quo 7680m2m?2 3272m3 9672m3 oy Mg Yry” Yo
Ha Ha Ha Qe = 57 To P T |
2 19207 m3y, 1287 m3, /In-z.n
—CHara T BT ‘b )2 @2
9672m3, 48m2m3, I o) o 3N, Y3, Y3y
d T7280n2mZ . 1287%md,  dmi_
0 _ ry _ My 4 Ny b 1728072m3, 12872m3, am3,
HD 192072m3  ~ 96n7m3Z, 24n2mZ, ® o g, YENT v
— — s it i - o
o 93 App1 N 9% Ay,2 Qau 8640m°mZ, 128n2m2, am?,
HB 38amand, T TesnInd,
384nZm’ 7687 %m’ F )y (w) )y ()
i i Qunaa® B Vv v
Q 9y Ay 1 I AHy,2 quad 64n2m?, 2m3,
W 384mZm3 76877m3, T, YOy pEy
(1) Ha Vi Yoy Ha
IWIY Ay .2 Qlequ — A, Yoo
QuwB *—12—384,,2".“ i
2 7y
3 1) gl Ve
Qm® =0y .. Qi 115207 2m?,
Hl 384072m?, 2
Ha (d)y,(e) )y, (e)
7} Ay Yoy, Yoy Yo, Yo
it o Y 2 2
Quq® P T Qiedq e e
o 11520m2m3, H H
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Top down + Bottom up: 2HDM

|| Dim-6 Ops. ‘

Wilson coefficients ‘

‘ Dim-6 Ops. ‘Wilson coefficients
P [ I ™ =D 0 ]
(d)
couplings + SMEFT WCs Z A )
2.2 2.2 - 2
167 My, 167 My, My,
d d d
3npin, Y 51; 3Mu2y 1 Y »(H; 3134y Ay 1 Y. »(H;
[37 operators generated at scale A! ] 3207m3,) 16x7m?, 167°m3,
(d) (d) 2 SM
’7H’1H2,2YH2 _ 3’77—[2 }'HZ'ZYHZ )“7.(2'2 Yd
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Theory uncertainties in EFT analyses: RGE effects + operator mixing

Usually, th.e running of the SMEFT For 2HDM, 51
operators ignored which emerge at A. But, operators generated
oo the measurements are at different scales. of which 14 are from
RGE!
0.002
£ 00000
O 0.001 -
, Increase in mass
scale relaxes the
, S oo parameter bounds!
—0.0005 - [
AllData, A =1TevV] -0.001
~20 Z10 0 10 20 |
Cu
~0002 [All Data, A =3 TeV|
2150 —100 =50 0 50 100 150
AtLO dC:(11) Cu [arXiv:2111.05876: Anisha, Bakshi, SB,
. —C. 1 o..C. Mz i) _1 ., .c . Biekétter,Chakrabortty, Patra, Spannowsky,
cz(MZ) - Cz(A) + Zj 1672 7chJ(A) log[ A ] dlog(p) — Zj 1672 72]6,7 2021] 64
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Theory uncertainties in EFT analyses: RGE effects + operator mixing

0.00002
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- 7 .
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S N |
Ry o 5 -
ny ol
S e Ly 0.0002
B ey -
BN if 5
0.00001 o oy A
N W :
o ol SR ]
: : ol
H o o $
,
H A '
i Fat

Usually, the running of the SMEFT or 2HDM, 51 operators ge.nerated )
perators ignored which emerge at A. But, (top-down matching) of which 14 are
he measurements are at different scales. from RGE! Examples (all suppressed
by 16n3):
8> Ouws Oap, Oaw; Ocpy Ocws Orrug
0.0003 |

0.0001
0.00000

0000t ' \
S ’ ~0.0001
[arXiv:2111.05876: Anisha, Bakshi, SB, Biekétter,

~0.00003 ~0.0002 Chakrabortty, Patra, Spannowsky, 2021]
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Higgs Effective Field Theory (HEFT)

HEFT is the most general parametrisation of low-energy physics with only SM DOFs!!!

[HEFT D SMEFT O Sﬂ/l Is there any scenario where only HEFT can describe low-energy effects of BSM?

Low-energy interactions only follow U(7)_ .

The interactions can’t tell us more about the properties of the microscopic theory

New non-decoupling strong dynamics — spontaneous EW symmetry breaking — Higgs-like scalar

SM not recovered when all BSM masses taken to infinity

Non-analyticity in Lagrangians can’t be removed by field redefinitions — arises when new states integrated
out acquire mass from EWSB — violates decoupling See Falkowski, Rattazzi

abhwb=

Unlike in the SMEFT, h is considered a gauge singlet and the Goldstone bosons, w? as an SU(2), triplet. HEFT
treats these separately — Goldstones embedded in Unitary matrix, U. ]-"(h) 1 Qa% . bg_z T

o[ Luprr O SF(W)Tr{D, Ut DMUY+1(5,h)2—
Part of the Lagrangian: HEFT - 77 _( )Tr{ Zuuj } 2( uh) V(h) = %m%vz(l i d3% n %Z_j) 4
Vi) = Slapd)F ) | D) e DU = 0,U +igWi2U — ig UZB,

See geometric interpretation of HEFT with Higgs and Goldstone bosons as coordinates = Motivated by Cohen et al.
of Riemannian manifold 66
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SMEFT versus HEFT

SMEFT

1. Most general set of local operators invariant
under SU(3) X SU(2), X U(1),

2. Operators suppressed by powers of new-physics
scale, A

3. Low energy states modelled using fields
transforming linearly under aforementioned
symmetries

4. Observed Higgs, h, is a component of an
electroweak doublet scalar, H

5. More restrictive symmetry structure — less
number of parameters which are correlated

HEFT

Manifest gauge symmetry is SU(3) X U(1),,,

Operators suppressed by electroweak breaking
scale, v

The SU(2), X U(1), symmetry is non-linearly
realised using a multiplet of Goldstone bosons

No relation between h and the Goldstone
bosons

Less restrictive symmetry structure — more
number of uncorrelated parameters

67



Backup Slides

68



Scaling of Wilson Coefficients and Selection Rules

Wilson Coefficient Estimates:

Assuming a single new-physics coupling g, and one mass scale in the UV, power counting yields:

On=1H|°: cn~gl,

In general, the Wilson

_ coefficients are free

OcH = |H|2 PHe.: CeH ~ gf, parameters with only
experimental constraints.

Ouo =|HPOIHP? . o ~ &2,
Ow = €k W”;V wi-vp W:’“ . cw ~ &« (naively).

Selection Rules and Corrections:

@ In a strongly coupled UV theory (g, > 1), naive scaling for Oy would be very large. However, the
same UV dynamics also contributes to the SM quartic Higgs interaction A\|H|* with X\ ~ g2. Since
experimentally A ~ 0.1, a protection mechanism (e.g. an approximate shift symmetry) is required,
leading to:

cH~Ag2 = cy<10.
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Scaling of Wilson Coefficients and Selection Rules

Selection Rules and Corrections:

o Chirality-violating operators (e.g. Oey) must be accompanied by the corresponding Yukawa
coupling:

2
CeH ™~ Ye 8y -

e For the gauge boson operator, if the SU(2), bosons are fundamental, amplitudes with n external

W bosons carry n powers of the gauge coupling g;. Therefore, O is not generated at tree level
and scales as:

g;

Cw ~ ——
1672’

typically cyy < 1073,
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Loop Momenta in Dimensional Regularisation

o Integration Measure: The loop integration is performed in

d = 4 — € dimensions:
dk
=4 — €.
/(27r)d’ d €

@ No Hard Cut-Off: Dimensional regularisation integrates over the
entire momentum range,

ApRr = 00,

so even momenta k > Agpt contribute.
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High-Energy Contributions and UV Matching

e Analytic High-Energy Contributions: Contributions from large loop
momenta yield analytic terms in external momenta:

f(p) =) an (ﬁ)n,

n

which can be absorbed into EFT counterterms.

e UV Matching: Finite loop corrections have the form

1 2

where the high-energy effects are encoded and matched with the UV
theory.
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The MSbar Scheme and its Advantages

e Subtraction Prescription: The MS scheme subtracts not only the
1/e pole but also universal constants:

1 1
— = — 4+ v + In(4n).
€ €

@ Renormalisation Outcome: After subtraction, the finite result

becomes
uz
T () 1
m

@ Advantages: This approach preserves gauge invariance, simplifies
calculations, and naturally introduces the renormalisation scale u to
absorb high-energy effects via matching.
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SMEFT-UV matching: flowchart

Heavy field
AOERINSM ) B3 0009090000 e
i 23 Ops. € SMEFT
.\ --------------- '| “II-I------III-I-..-...
Nt SQ[IB. . ' - Bayesian inference
ilbert Series Outpu - . .
l Model independent 5 using OptEx
' .
:
BSM Lagrangian I Observables - Global Fit
T b of 23 WCs
CoDE EWPO, Higgs, .
’I‘r;e: lll-.loop L Di-boson, Di-Higgs | kel i
mn
o BSM parameters

{

Model dependent WCs
{Ops. CIMERY | (function of BSM parameters)

:

Constraints on BSM
matched WCs

...IIIIII.IIIIIIIIIIIII‘

“Illlllllllllll

*
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Vh production at pp colliders

A Beam Axis
Cd /
. l 1 0
|
P/ [JPlane of pp-Vvh @ InVhCoM

[Orlaneofv-l @ InllcoMm
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Vh production at pp colliders

@ ©, ©and {x,y,z} in Vh CoM frame (z identified as direction of V-boson; y

identified as normal to the plane of V and beam axis; x defined to complete the
right-handed set), 0 in V CoM frame

® Q: How much differential information can one extract from this process?

@ For three body phase space, 3 x 3 — 4 =5 kinematic variables completely define

final state

@ Barring boost factor, the variables are /s, ©, 0, ¢

(11— 5352,

fr7 = CeCs,

fir = (1+C3)(1+CF),
fir = C,SeSs,
fir = C,8054CeCy, ‘

~

fir = S,Se5, \

fir = 5,5056CeC,

frrv = C2,58 57,

Many angular
distributions

@' = 52,585 » ) testable at

the LHC

Beam Axis

........................

/ [[Iplane of pp-vh @ InVhCoM
O Planeof V- @ nllCom
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Vh production at pp colliders

q W/Z
q W/Z q Wiz
W/Z .
Wiz — Diagram not there
N -
N N & 6 N\ in SM
7 h q \H ~H
q N H
Can be made more
i 1al! _
dlfferen'ElaI. e @L = 5252, \ Ono = (HTH)O(HH) 08 — iH'6* D, HLo*yL
7 2; P f’I:‘T B C’GC"9,2 2 Onp = (HTDMH)*(HTDHH) Oup = |H|2BAU~VBHV
o ?T - S ;C::)(l +Cal Oy = i D, Hiry ur | Owws = Hlo?HW2, B CP-odd
P @ 0 = 020,
h \Z fg = CLFSeSe)C’eCe) Ora = iH' D, Hdpy* dr Onw = |H W, WH operators
=@ ,
- Pl 955519, One = iH' D, Heny" er Ops = HP B B*
LA F2r = 8,5056CeC, O = iH D HAQ || O = Hlo?HWE, B
oo-Zh h ;) = 2 g2 . I _ %
A Hrtent 8 bt Ly =~ ert; 0% = iH'0° D, HQAo*Q |\ O = [HEW2, W

f@ = e s )

Rd -
o) = iH' D HLy*L

Oy, = ys|H*(QHbg + h.c).

Possible to probe multiple
angular observables

D6 operators in Warsaw basis contributing to anomalous
hVV*/hVff couplings 77




Zh and Wh production at the LHC

ALs D
+
_|_
+
CP-odd new
Lorentz
structure /'
(angular 45

deformation)

SM scaling
k-framework )
Diagram not
2m? 2m2 ZHZ in the SM
ah w + — ~h Z I3 w i
S8pw —— hW™W, + 082, — 5 | T o8 (Widy"di+h.c) 4 directions relevant for

oglV (Wioiv e + h.c.) + gl

the high-energy primaries

h
;(WIM’Y”eL + h.c. (to follow)

Contact interaction; no

h _ - h_ -
8vQ ;(WI”L“Y”dL +he)+ Z > & ~Zuf"'f | g propagator; Energy growth
F F

h h
wa—W+'LWW + Rww — WHHY W — =+ HZZEZMVZ;W

v

h

fzz —ZM7
2v g

h
K 2y ;A#VAMV

' === (CP-even new Lorentz structure
S . . = (angular deformation)

4

h . h = m

Deformations written in broken phase after symmetry breaking
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Mapping on to the Warsaw basis

w g V2 (3) ow "z Yt
g = ———, where = —(2tg,, cwB +
f 5 W2 “HF % 455 my A2 0w
w
h (3) b YV <HD
Ewr = \/—g—CH,.-, Sww = A2 (CHD T 2 )
2v2 . 2V2
FWW = T CHW Rww = /\_2CHW
/ 2
s = - et - —(| f1e$i2 — T+ /72 — 17§ Deppdeay,,
CGW A CeW
2
om g
Z
+ (T3cp,,, + Yrsp,,)
2 2 w w
m% 2C9W59
b v? CHD h 2g D) _ 7t ()
S8z = —(wo+ . Bgf=— —(IT3| — Tieiid + (/2 = T4 Der)
4 o
2v2
Kzz = (CoWCHw + SGWCHB + 50, €6y CHWB)
. 2"2 2 2
Rzz = 75w uw + %y He + ow oy Hive)
2 2
7 . . A +V_(c o e CHD)
bb N2 amp P A2 H 4

VH: Relations to the
Warsaw Basis

Check out Rosetta:
an operator basis

translator for
SMEFT
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High-energy primaries

1. The four channels, viz., Zh, W*h, W*W and W*Z can be expressed (at high energies)
respectively as G%h, G*h, G*G" and G*GY and the Higgs field can be written as
o+
(h-l—iG0>
2

2. These four final states are intrinsically connected by gauge symmetry even though
they are very different from a collider physics point of view

3. With the Goldstone boson equivalence theorem, it is possible to compute amplitudes
for various components of the Higgs in the unbroken phase

4. Full SU(2) theory is manifest [Franceschini, Panico,Pomarol, Riva, Wulzer, 2017]

80


https://arxiv.org/abs/1712.01310

High-energy primaries

Amplitude High-energy primaries Amplitude High-energy primaries
h —nh
ﬁLdL — WLZLs WLh \/§a¢(13) 'L_IrLdL — WLZL, WLh 9zdpd, \/igz““”'
arur —> W W, (1) (3) upur — WLWL h
7 aq” +aq 7 9zdyd;.
drd;, — Zrh drd;, — Zrh
drd, - Wi Wy, (1) 3) (ZLdL — WLWL h
= aq - a'q _ gZuLuL
drur — Zih urur — ZLh
frfr > WLWL,ZLh as fefr > WiWir,Z1h g’Zlfan

Vh and VV channels are entwined by symmetry and they constrain the same set of observables at
High energies but may have different directions [Franceschini, Panico,Pomarol, Riva, Wulzer, 2017,
SB, Gupta, Seth, Reiness, Spannowsky, 2020]



High-energy primaries

Amplitude High-energy primaries Low-energy primaries
urd, - WrZp,, Wih \/iat(za) ﬁ% [Coy (69Z, — 69%1)/9 — ng 5912]
"‘3’:;1“2? o + af® —% Vit ry + T3-5gT + coy 695, /]
JZZ L—;WZ’ZL o — g _i_%i (Y13, 05y + T5 097 + co,, 092/ 9)
Frfr = WiWi, Zih ay —i—%j/ (Yt Oy + T4R09F + con, 97R/ 9]

Vh and VV channels are entwined by symmetry and they constrain the same set of observables at
High energies but may have different directions [Franceschini, Panico,Pomarol, Riva, Wulzer, 2017,
SB, Gupta, Reiness, Seth, Spannowsky, 2020]



High-energy primaries

SILH basis Warsaw basis
Ow = §(H'o" D“H)D”W“ 0 = (@10 QL) (iH 0" D ,H)
Op = 18 ¢ (H'DrH)o B, "0, = (QryQr)H!'D ,H)
Osw = ig(D*H)lo"(D*H)W?, | O = <umuuR><zH*‘B H)
Oup = ig(D*H)? (D*H) By 04 = (dpydg)(iH' D ,H)
Oow = —§(D“Wa )
O2p = —3(0"B,,)?

Dimension-6 operators contributing to the high energy longitudinal diboson production channels in
the SILH and Warsaw bases [Franceschini, Panico,Pomarol, Riva, Wulzer, 2017]

(1) (3) Relating the high-ener
1 c 3 elating g g8y
4 Az y g — 4 Az 70’((1 ) — #, and CL¢(1 ) = = 4 primaries with the

Warsaw basis operators
We are dealing with four channels and there are only four o

indeeendent couelinﬁs at Elax at hiﬁh enerﬁies.



Zh production (Helicity amplitude)

@ For a 2 — 2 process f(o)f(—o) — Zh, the helicity amplitudes are given by

~

_ 1+ oAcos® my, g . 5
MA_:‘: =0 Gy 1|+ Vf + Ryy — iIARwy
7 V2 V3 gf 2m%/_

_ sm@ 1 s -
MI=0 = Gy [.+5gvv +2Rw + 6gf + ggﬁ (—5 + 5 )
f .

A

kww =  Eww
A Qre
Kzz = Kkzz+ - —Z KZv,
f
2 Qre
Kzz = Kzz+ - — Rzy
f

@ )\ ==+1and o = +£1 are, respectively, the helicities of the Z-boson and
@ wie . Z f
initial-state fermions, gf = g(T3 — Qfsgw)/cow

® Leading SM is longitudinal (A = 0), Leading effect of Ky, Kzz, K7z is in the

transverse-longitudinal (LT) interference, LT term vanishes if we aren't careful
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Angular observables: Zh and Wh production at the LHC

(97)%—(90)?
€LR = i

Z | A(8,0©,0, g0)|2 — a;; sin> Osin® 0 + aer cos © cos

LR

(97,)*+(97,)?

G = 997/(9%)? + (97,)?/(cos OwT )

+ a%(1 + cos? ©)(1 + cos® ) + cos psin O sin 6

X (aj1 + a1 cosfcos ©) + sin psin O sin 6

x (31 + &2 coscos ©) + arys cos 2y sin® O sin?

+ G7+ sin2psin? Osin? 0

Suppressed moments

v = V3/(2my)

2
sh zZ gi 2
%[1+25gvv + 4Ry + 2087 + 7 (=1 + 4~ )]

2+2 + Avy

g—fl”“(—ﬂ“”vv ’72]

f

h
e

—QzaeRLfiv

—szvvv
2 g
BVf |, o 2
Sl (H 4 o)
Do
9 Aw

T (Fow]

%5




Zh and Wh production at the LHC

ALs D
+
_|_
+
CP-odd new
Lorentz
structure /'
(angular 45

deformation)

SM scaling
k-framework )
Diagram not
2m? 2m2 ZHZ in the SM
ah w + — ~h Z I3 w i
S8pw —— hW™W, + 082, — 5 | T o8 (Widy"di+h.c) 4 directions relevant for

oglV (Wioiv e + h.c.) + gl

the high-energy primaries

h
;(WIM’Y”eL + h.c. (to follow)

Contact interaction; no

h _ - h_ -
8vQ ;(WI”L“Y”dL +he)+ Z > & ~Zuf"'f | g propagator; Energy growth
F F

h h
wa—W+'LWW + Rww — WHHY W — =+ HZZEZMVZ;W

v

h

fzz —ZM7
2v g

h
K 2y ;A#VAMV

' === (CP-even new Lorentz structure
S . . = (angular deformation)

4

h . h = m

Deformations written in broken phase after symmetry breaking
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EFT validity

@ We estimate the scale of new physics for a measured ggf

@ Example: Heavy SU(2), triplet (singlet) vector W2 (Z’) couples to SM fermion current
iH'0*D,H (iH' D, H)

fcrafy“f (1?7,u f) with gr and to the Higgs current with gy
A~ gug*v’
JZuy dyp, 2A2 ’
h gH_qgfv2 h - gﬂgg’},un.duvz
.qu o A2 gZuR‘dR A2

@ A — mass scale of vector and thus cut-off for low energy EFT

@ Assumed gr to be a combination of gg = g’ Yr and gy = g/2 for universal case
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Higgs-Strahlung at the LHC (hZZ*/ hZff) (at high energies:
contact interaction) /" Eventgenerator "\

(hard-process
simulation, resonance
decay, PDF sampling,

etc) — parton

@ We study the impact of constraining TGC couplings at higher energies
@ We study the channel pp — Zh — ¢t ¢~ bb

@ The backgrounds are SM pp — Zh, Zbb, tt and the fake pp — Zjj (j — b fake rate taken showering (ISR, FSR,
as 2%) etc) — hadronisation
@ Major background Zbb (b-tagging efficiency taken to be 70%) (baryon, meson

production, etc) —

@ Boosted substructure analysis with fat-jets of R = 1.2 used .
underlying events

35:; Cut-off W Zh (EFT
: g (MPI) — detector
30; ® Zbb 4 o . .
; i simulation (smearing,
I Cuts [ZWZh (SM)]) efficiencies, energy
At least 1 fat jet with 2 B-mesons with pr > 15 GeV 0.23] 0.41 iti —
2 OSSF isolated leptons 0.41] 0.50 dePOSItlon' etC) .
80 GeV < My < 100 GeV, pr.ec > 160 GeV, ARy > 0.2 [0.83 0.89 event reconstruction
At least 1 fat jet with 2 B-meson tracks with pr > 110 GeV [0.96| 0.98 . I
2 Mass drop subjets and > 2 filtered subjets 0.88 0.92 (pa rticle
t 2 b-tagged subjets 0.38| 0.41 H ifi H i
: 550 1050 = 115 GeV < my, < 135 GeV 0.15] 0.51 Identl_flcatlon' Jet
Mzn(GeV) AR(bi, £;) > 04, Er <30 GeV, |yn| < 2.5, prasz > 200 GeV]0.47|  0.69 clustermg, M ET, etc)
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Differential in energy: constraining the contact terms

Exclusion from WZ [Franceschini et al, 2017]

_/

Accidental / '

cancellation of 005
interference terms )

] Zh + WZ combined
/

Exclusion from Zh

LEP exclusion

region = ~_WBF analysis in diphoton channel
N

A common parameter
space in triple-gauge

couplings for multiple
channels - correlated at

high energies With BDT optimisation ~ 0.50 *
s

without cuts ~4.6/165

-0.10-

SM
o.Zh /O'be

With regular cut-based analysis ~ 0.26




Differential in energy: constraining the contact terms

Single parameter fits

| Our 100 TeV Projection Our 14 TeV projection LEP Bound from Zh
5g”, +0.0003 (=0.0001) +0.002 (=0.0007) —0.0026 =+ 0.0032
ng +0.0003 (+0.0001) +0.003 (=0.001) 0.0023 =+ 0.002
5guzll; +0.0005 (+0.0002) +0.005 (=0.001) —0.0036 =+ 0.0070
585 +0.0015 (=0.0006) +0.016 (=0.005) 0.016 + 0.0104
\6_g1§.J +0.0005 (+0.0002) +0.005 (0.001) —0.0001% 043
Sriny +0.0035 (=0.0015) +0.032 (=0.009) —0.01610 085
S +0.0035 (=0.0015) +0.032 (=0.009) 0.0004 =+ 0.0007
w +0.0004 (=0.0002) +0.003 (=0.001) —0.0003 + 0.0006
Y +0.0035 (=40.0015) +0.032 (=0.009) 0.0000 + 0.0006

Directions from VBF, Zh, Wh, and WZ

(~0.04 ¢} + 1.4 ¢ + 0.1 cur — 0.03 cqp)é| < 0.003  [VBF]
(~0.18 c&) + 1.3 ¢ + 0.3 cur — 0.1 cap)€| < 0.0005  [Zh]

What about the W*W-direction?

€] < 0.0004  [Wh]
~0.0004 < c5)¢ < 0.0003  [WZ] %0



Zh and Wh production at the LHC
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Differential in angles: constraining the angular terms

@ Method of moments used to
constrain the other couplings

@  We obtain percent level bounds
on K 77 and in the
(kzz, aggz) plane

@ Competitive and complementary

bounds to previous analyses

@ Independent bound on the CP-odd

CP-odd coupling, couplings!

[ 1% 1 < 0.03

h->ZZ Rate
~Sl'g|al rate bound

MELA h ->ZZ|6AgZ"<Z=O)

0.00

-0.05

Only incl: tnformatio

-02 -0.1 01 02

Sgn

2z

Kww

@ We obtain percent level bounds

on Kyyw and in the

(eww ag{,'vw) plane

(*] Competitive and complementary
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We consider all operators simultaneously!
ATLAS considers one at a time

ected: Stat+S)
ATLAS o o iy
H—>ZZ* > 4| ~—&— Observed: STXS
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SMEFT CP-odd couplings —k— Observed: Hyy + Hrt
@ Observed: CMS
Best Fit 68% CL
. -0.08 [-0.42,031)
Cui il 000  [-037,037)
- -0.06 [-0.22,0.09)
e 002 [-0.56,0.53)
C e e 000 [-0.69,069]
° 025  [-0.82,031]
— 060  [-0.07,1.09]
Cc - —_—— i ——— +0.60 [-1.50,1.50]
HW —_— 026 [-0.15,0.67 ]
4 s o
~ - x10 -0.00 [-0.02,0.01]
d X —h— . x 10 001, [-0.01,003]
-1 0 1 2 3 4
Parameter value 92



Some Clarifications

Hilbert Series: Mathematical Details

@ The Hilbert series is defined as o
H(t) =) ant",
n=0

where a, is the number of independent invariants of degree n. Here, the variable t is a formal
parameter that tracks the weight (e.g. the mass dimension or another grading) of an operator.

@ For fields ¢; with assigned weights w;, the single-letter partition function is:
fF(t)=>) t".
i

For instance, if a field has mass dimension 1, its contribution is t1.
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Some Clarifications

Plethystic Exponentials:

e Given a single-letter partition function f(t) for a set of fields (with each field's contribution
weighted by its mass dimension or other quantum number), the plethystic exponential is defined as:

PE[£(£)] = exp (Z % f(tk)) .
k=1

@ This function generates the full set of multi-field operators (or monomials) by summing over all
symmetric products of the fields.

Molien—Weyl Integrals:

@ To count only the gauge-invariant combinations, one projects the full generating function onto the
invariants by integrating over the gauge group.
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Some Clarifications

@ The Molien—-Weyl formula is:
H(e) = | du(e) PEIF( )]

where du(g) is the invariant Haar measure on the gauge group G and f(t; g) includes the
dependence on the group elements (via characters of the representations).

e This integral effectively sums over all group transformations, leaving only the combinations that are
invariant under the gauge symmetry.

Together, the plethystic exponential and the Molien—Weyl integral provide a systematic and powerful
method for counting and classifying the independent operators in an EFT.
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Some Clarifications

Partition Function:

@ The partition function is defined by:
Z= /D¢e"5[¢1.

@ Under a local, invertible field redefinition,
P(x) = ¢'(x) = Flo(x)],

the measure transforms as:
D¢ = J[F] D¢/,
where J[F] is the Jacobian determinant.

@ In many regularisation schemes (e.g. dimensional regularisation) J[F] is trivial (or its effect can be
absorbed), ensuring that physical observables (like the S-matrix) remain invariant.

Equivalence Theorem:

This theorem guarantees that local, invertible field redefinitions do not affect on-shell S-matrix
elements, so different operator bases related by such redefinitions yield the same physical predictions.
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Some Clarifications

Regularisation and Dimensional Regularisation:

Loop integrals in EFT are divergent. Dimensional regularisation sets d = 4 — € so that divergences
appear as poles in €. For example,

dp 1 i 1 1

(2m)? (p> — m?)>  (47)% \ € '
Renormalisation Group Equations (RGEs):
After renormalisation (typically in the MS scheme), the Wilson coefficients c;(x) become
scale-dependent, obeying

d
ud—uc,-(u) =i (1),

ensuring that physical observables remain p-independent.
Matching Procedure:

Matching the EFT to the UV theory involves equating on-shell S-matrix elements (or 1PI functions)
order by order in 1/A and in the loop expansion, thereby fixing the EFT Wilson coefficients in terms of
the UV parameters.
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Theory uncertainties in EFT analyses

Type of
Uncertainty Source Example
o N
Truncation Missing higher-order Ignoring O(1/A*) terms when fitting SMEFT
operators parameters at the LHC
\ J
e 3\
Matching Dependence on the unknown  Different UV completions (e.g., integrating out a
UV theory heavy scalar vs. a heavy vector boson) yield
\ different EFT coefficients )
4 N\
Renormalisation Missing higher-loop effects Scale dependence in next-to-leading-order (NLO)
Scale in SMEFT Wilson coefficient SMEFT fits due to missing next-to-next-to-
L running leading-order (NNLO) corrections )
Operator Mixing Running & basis dependence ~ Warsaw basis vs. Higgs basis in SMEFT leading to
different constraints on Wilson coefficients

Non-Perturbative

Flavour

Assumptions

EFT Validity

Parametric

Strong interaction effects

Assuming universality or
Minimal Flavour Violation
(MFV)

Energy scale exceeding A,
making EFT expansion
unreliable

Uncertainty in Standard
Model (SM) input
parameters

Hadronic form factors in lattice QCD calculations
affecting flavour physics EFTs (e.g., B — K{T4~
anomalies)

Assuming MFV in SMEFT may underestimate new
physics contributions to rare b — sf*4~
transitions in LHCb anomalies

High-py regions at the LHC may invalidate a
dimension-6 SMEFT truncation

Uncertainties in my, ag, CKM matrix elements,
and the top quark mass affecting SMEFT global
fits

98



Theory uncertainties in EFT analyses: NLO effects (QCD)

pp - Wh e 13 TeV

pp > Zh @ 13 TeV 0.100 0.100
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— ; =
> & 0.010= 0.010
% 0.001 0.001 = -
2, = . =
= Automated in o Jo.001
S 10 10+ MG5aMCeN s '
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N LO through N
= NLOCT! = 10 107
1075 10 . . . . .
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https://arxiv.org/abs/1710.04143

The W*W " channel

s

X
cos 0
ALpsm = 5gfL [Z“ﬂL'yuuL + W (W+“17,L'y#dL +h.c.) +.. ] + (ngR [Z"ugy,uR)

V2
- cos 6 _
o2, ‘ Zhdyy,dp | ﬁW (W agy,dy, +h.e.) + .. ] +agZ, [Z”dRyudR]

J

\
+igcos Owogy [ZH(W "W, —h.c)+ ZWW W, +.. ]
+ iedk (A — tanbw Z,, )W W ™ + .. ],

with Zy, = Zy — iW/ W,/ Ay = Ay, Wi = WE +iWE(A+ Z),), where V,, = 8,V, — 8,V,,
and Oy is the Weinberg angle
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Electroweak corrections in W'W-

Leading order

W W
5 W u u W W 2y vy W
i
d d W W
u 0
—  rrE—— ’ J

/

Real

W W W
q W
W g P4 LW ¢ W W g DY -
. Z/v ~ g Z/v q Z/y : q ¢+\\4
i £ [Bierweiler et al, 2012]
W W
W J K ” q
a2 q g W /
W : W o 7T W
g W~y el oo q q o
q ¥ oY

bremsstrahlung

%

W
p W a g W a2/
& e )T
q 0% q 0% q




Electroweak corrections in W'W-
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Large (negative)
electroweak
corrections!

[arXiv:1208.3147: Bierweiler,

Kasprzik, Kiithn, Uccirati]
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Electroweak corrections in W*W " (#j))

pp — ;4+1/;4e_17e + X @13TeV

';‘ 10 %I T T T T | T T T | T TTT | T T T | T 1T ‘ T T | T 1T IE 3
3 - — LO 18
S~ — =
£ 4L === NLO QCD =
. e e NLO QCD+EW E 5
B — NLOQCDxEW 12
fw0's 000 B .. NLO QCDXEW ;00555
IS - ]
= B |
107 E
; Njet = 0 ;
T I - | I | I | | I | | I | | I | \ I | | | 1
10 3 :I 11 I T l T | [ I 1T I | LT | ’ T | L I:
1.4 — =
. oo 38 121 =
Squared sample diagram representing interference % - ___ ___~—r— ____________ -
contributions in the real corrections at order ¥ gl e s XE
O(asas) in the Cha’nn‘el pp _) ’J’-I_Vﬂ:e_ﬁejj' E| T A | L1l | [ ‘ [ ‘ [ | L1 | |.E
[arXiv:2005.12128: Briuer, Denner, [Comparing full QCD x EW corrections with QCD x EW (approx.)]

Pellen, Schénherr, Schumann, 2020]
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Electroweak corrections

We include approximate electroweak (EW) corrections in Sherpa which includes infrared
subtracted EW 1-loop corrections as additional weights to the respective Born cross sections.
In those the event weight is calculated based on the expression

dONLO,EW pprox — [B(<I>) + VEw(®) + IEW(<I>)]d<I>
B = Born contribution also entering the uncorrected QCD cross Section
V,,, = electroweak virtual corrections at 1-loop accuracy
I, = generalised Catani-Seymour insertion operator for EW NLO calculations.
Latter subtracts all infrared singularities of the virtual corrections. This fundamentally

arbitrary procedure should provide a good approximation if electroweak Sudakov logarithms
are dominant.
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Event generation

pp — WHITv)W—(I"v) ph=pp=M?y + M7,
[SB, Reichelt, Spannowsky, arXiv: 2406.15640]

W*W production at L = 35.9 fo W*W production at L = 35.9 fb™
102 ; Recola QCD g — Qcd
E Recola QCD + EW [add] - ——— QCD + EW [add]
C OpenLoops QCD 10 = —— QCD + EW [mult]
10 = OpenLoops QCD + EW [add] = QCD + EW [exp]
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% 1 2 E
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— 107 =
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= 1072 =
L S 8
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o COLA: QCD/(QCD + EW [add) o QCD/(QCD + EW [mult.])
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Signal: SMEFT+SM interference; Backgrounds: Drell-Yan (pp — £7£7),VZ,tt + tW, WL
The ME W *W Z is significantly suppressed because of phase-space. Moreover, the CMS analysis that is used here 105
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Results (95% C.L. bounds) - 1 and 2 parameter fits

[SB, Reichelt, Spannowsky, arXiv:2406.15640]

L=3000 fb~"

5o L=3000 fb 00041 o

N = = QCD

X 4'5? \\ / / Big difference

4 4= betweenred and
5 e i_ blue regions! 0002~
3;— Ng,
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25— /
15
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0.5;—
gt T T o o0z o0 oy oy 00 02

69§L nguL
Coupling | QCD: £L=1300fb~"' | QCD+EW: L=300fb"' | QCD: £L=3 ab™" | QCD+EW: L=3 ab™*

597, [-0.2744 0.0531] [:0.1569, 0.1569] [0.1611, -0.0421] [:0.0567, 0.0567]
dqgZ [-0.0180, 0.0818] [-0.0474, 0.0474] [0.0111, 0.0463] [-0.0167, 0.0167]
292, 70.0008, 0.0039] [70.0023, 0.0023] 0-0006, 0.0026] 70.0010, 0.0010]
092, -0.3910, 0.0927] [-0.2383, 0.2383] [F0.2969, -0.0702] [F0.1104, 0.1104]
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Theory uncertainties in EFT analyses: operator truncation

/&ample showing the\

importance of
truncation of operators
to match specific
models for a top-down
approach!

Qauwson etal., 2022 /
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In parameter space of interest linear
term dominates the squared term!

SB, Englert, Gupta, Spannowsky, 2018
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Theory uncertainties in EFT analyses: TGCs

1. EFT operators contributing to anomalous charged triple
gauge couplings (cTGCs) and anomalous neutral triple gauge
couplings (nTGCs) —— treated separately!

2. For cTGCs, D8 operators are usually not considered.

3. For nTGCs, D8 operators are usually the first ones to show
effects. Some such operators also contribute to cTGCs.

4. Necessary to consider TGCs through a holistic approach!
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Theory uncertainties in EFT analyses: TGCs

1. Relevant operators for TGCs at dimension-6 (D6) X3(X = W, B field strength tensor)

2. Relevant operators for TGCs at dimension-8 (D8)
X2¢*D?, X**D (¢ = Higgs field, 1) = fermion fields, D = covariant derivative)

3. These classes of operators contribute to TGCs and it is crucial to consider them in conjunction

Cw = (12c4.2 — 3bg2) g2C Cs: = (12c42 — 3bp.2) g3C
= {2 02) 530w w = (1242 02) 5203 Phenomenological
study! SB, Subba (in
; reparation)
¢4D4 ‘ ,¢23¢3 ¢2W¢3 d)2G¢3 w2¢2D3 prep
ByD IR ool ¢ 0 0 W
W2¢?D? g3 ”- i ,)DA 0 0 0 92 Alonso et al., 2013
i ‘“) 5 W B¢? D? 0 0 0 9192
WEo™ D" @ep? | 0 0 0 g2  Bakshietal,2022

109
s


https://arxiv.org/abs/1312.2014
https://arxiv.org/abs/2205.03301

