Jet Physics and Machine Learning: Lecture 4 : ML for Jets & HEP

Sanmay Ganguly IIT-Kanpur sanmay@iitk.ac.in

28/02/2025

IMSc Spring School on High Energy Physics - 2025

The path we will take

Sanmay Ganguly (IITK)

A broad strategy towards physics inference

The physics at the core: driven by the interaction between quantum fields, computed via perturbative or lattice techniques.

Final Particles Produced via hadronization (no first principle analytic techniques are available) **Detector output/Readout** Produced via hardware or simulation

The collider program flow-chain

JET Physics + ML Lecture-4

Sanmay Ganguly (IITK)

The collider program flow-chain

JET Physics + ML Lecture-4

Sanmay Ganguly (IITK)

1. Decide the right representation of the data (images/graphs/trees..)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Looking the problem through ML lens

Sanmay Ganguly (IITK)

The path we will take

Sanmay Ganguly (IITK)

Jet tagging (where it all started)

 $\{p_1, p_2, \dots, p_n\}$

Jet Algorithm (for CA, kT, anti-kT)

 $\{j_1, j_2, \dots, j_k\}$

 $\{p_1, p_2, \dots, p_n\} = F(q)$

The forward problem is not computable from first principle

The question of jet tagging is how do we define the inverse problem? $q = F^{-1}\left(\{p_1, p_2, ..., p_n\}\right)?$

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Different possible representations

Data representation ⇔ NN correspondence

Sanmay Ganguly (IITK)

Object tagging

 $e'_{ijm} = \text{ReLU}(\boldsymbol{\theta}_m \cdot (\mathbf{x}_j - \mathbf{x}_i) + \boldsymbol{\phi}_m \cdot \mathbf{x}_i),$

Particle Net : 1902.08570 Huilin Qu, Loukas Gouskos

$\exists r \times iV > cs > arXiv:1801.07829$

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 24 Jan 2018 (v1), last revised 11 Jun 2019 (this version, v2)]

Dynamic Graph CNN for Learning on Point Clouds

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon

Sanmay Ganguly (IITK)

Let $x_1, x_2, ..., x_N \in \mathbb{R}^k$ be n pieces of data. This forms a set of cardinality N.

https://geometricdeeplearning.com/lectures/

Let $x_1, x_2, ..., x_N \in \mathbb{R}^k$ be n pieces of data. This forms a set of cardinality N.

Neural network on a set

https://geometricdeeplearning.com/lectures/

Let $x_1, x_2, ..., x_N \in \mathbb{R}^k$ be n pieces of data. This forms a set of cardinality N.

Neural network on a set

https://geometricdeeplearning.com/lectures/

Let $x_1, x_2, ..., x_N \in \mathbb{R}^k$ be n pieces of data. This forms a set of cardinality N.

Neural network on a set

https://geometricdeeplearning.com/lectures/

Basic required property : permutation invariance

Let $x_1, x_2, ..., x_N \in \mathbb{R}^k$ be n pieces of data. This forms a set of cardinality N.

Neural network on a set

https://geometricdeeplearning.com/lectures/

Basic required property : permutation invariance

How the P.I. is achieved?

 $\mathbf{f}(\mathbf{P}\mathbf{X}) = \mathbf{f}(\mathbf{X})$

Remember the permutation on a set?

Sanmay Ganguly (IITK)

What's the basic criteria of a GNN?

General methods of GNN

The different flavors of MPN

The three "flavours" of GNN layers

The general GNN

arXiv : 1806.01261

The general GNN

arXiv : 1806.01261

Sanmay Ganguly (IITK)

Application of sets & graphs in HEP

$\exists r \times iv > hep-ex > arXiv:2203.12852$

Search... Help | Adva

High Energy Physics – Experiment

[Submitted on 23 Mar 2022 (v1), last revised 25 Mar 2022 (this version, v2)]

Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges

Savannah Thais, Paolo Calafiura, Grigorios Chachamis, Gage DeZoort, Javier Duarte, Sanmay Ganguly, Michael Kagan, Daniel Murnane, Mark S. Neubauer, Kazuhiro Terao

$\exists \mathbf{r} \langle \mathbf{i} \mathbf{V} \rangle$ hep-ph > arXiv:2012.01249

High Energy Physics – Phenomenology

[Submitted on 2 Dec 2020 (v1), last revised 7 Dec 2020 (this version, v2)]

Graph Neural Networks for Particle Tracking and Reconstruction

Javier Duarte, Jean-Roch Vlimant

$\exists \mathbf{I} \setminus \mathbf{I} \vee > hep-ex > arXiv:2007.13681$

High Energy Physics – Experiment

[Submitted on 27 Jul 2020 (v1), last revised 21 Oct 2020 (this version, v2)]

Graph Neural Networks in Particle Physics

Jonathan Shlomi, Peter Battaglia, Jean-Roch Vlimant

Sanmay Ganguly (IITK)

1. Decide the right representation of the data (images/graphs/trees..)

 f_{θ}

2. Choose a NN model 1. Decide the right representation (CNN/GNN/) of the data (images/graphs/trees..) arXiv: 2204.13713, Camel's simulation f_{θ} $y = f_{\{\theta\}}(X)$ $L(y, \hat{y}) \equiv L(\{\theta\})$

2. Choose a NN model 3. With a defined learning task, 1. Decide the right representation (CNN/GNN/) of the data (images/graphs/trees..) compute the loss function. arXiv: 2204.13713, Camel's simulation 25 20 15 f_{θ} $y = f_{\{\theta\}}(X)$ 10 5 0 25 20 15 0 $L(y, \hat{y}) \equiv L(\{\theta\})$ 10 5 10 5 15 20 0 25

2. Choose a NN model 3. With a defined learning task, 1. Decide the right representation (CNN/GNN/) of the data (images/graphs/trees..) compute the loss function. arXiv: 2204.13713, Camel's simulation 25 20 $\dot{y} =$ $f_{\{\theta\}}(X)$ 15 f_{θ} 10 5 0 25 20 15 0 $L(y, \hat{y}) \equiv L(\{\theta\})$ 10 5 10 5 15 20 0 25

Variation in data

No-labels, the task is to figure out p(x) from which the data is drawn. e.g. VAE

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Calorimetery

Image from 1705.02355

 $f_{\{\theta\}} ($

A 3-D view for topoclusters only

8 X 8 Low Res detector

32 X 32 High Res detector

-40 -20

Ò

Energy rel residuals [%]

40

20

Sanmay Ganguly (IITK)

JET Physics + ML Lecture-4

40

When do intrinsic calorimeter sizes are limiting factors ?

The intrinsic detector resolution is a blocker

An event display for super-res prediction

Sanmay Ganguly (IITK)

The mass distribution

Sanmay Ganguly (IITK)

The mass distribution

Invariant mass from reconstructed 4-vectors.

Let's think how we can bring this in the collimated object business.

Sanmay Ganguly (IITK)

Pion identification within ATLAS

A classification & regression task is tested on ATLAS samples. The calibrated topocluster cells are used to form images & P.C.

ATL-PHYS-PUB-2020-040

$$\mathcal{L} = (1 - \alpha)\mathcal{L}_{\text{classification}} + \alpha \mathcal{L}_{\text{Regression}}$$

Sanmay Ganguly (IITK)

Pion identification within ATLAS

Sanmay Ganguly (IITK)

Pion identification within ATLAS

Sanmay Ganguly (IITK)

Electron identification within CMS

Sanmay Ganguly (IITK)

Electron identification within CMS

Sanmay Ganguly (IITK)

Super-resolution

SR model is capable of generating merger histories that are solely dependent on on time-consistent LR input

MNRAS 000, 000-000 (2022)

Sanmay Ganguly (IITK)

Tracking

Sanmay Ganguly (IITK)

Tracking & ML

$$(\mathbf{v}_{i}, \mathbf{e}_{k}) \qquad (\mathbf{v}_{i}', \mathbf{e}_{k}') \qquad (\mathbf{e}_{k}'') \qquad ($$

Sanmay Ganguly (IITK)

Tracking & ML : ATLAS

ATL-ITK-PROC-2022-006

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Full ML driven PFlow : MLPF

MLPF *Eur. Phys. J. C (2021) 81: 381* J. Pata et. al.

PF lepton, hadron, photon = F_{PF} (track hits + calo cells)

Sanmay Ganguly (IITK)

Combining track + calo for PFlow

MLPF arXiv : 2203.00330 J. Pata et. al.

Sanmay Ganguly (IITK)
What's the core data structure?

What's the core data structure?

Sanmay Ganguly (IITK)

The new networks we tried

Sanmay Ganguly (IITK)

The network flow comparisons

Sanmay Ganguly (IITK)

Design of the performance metrics

Sanmay Ganguly (IITK)

Data complexity & sample output

Sanmay Ganguly (IITK)

JET Physics + ML Lecture-4

Reco Event

X Charged Hadron

1.8

1.9

2

0.09

0.08

0.07

0.05

0.06 Sec.0

0.04 U

0.03

0.02

0.01

0

0.7

0.6

0.5

0.5 0.4 [GeV] 0.3 Energy [GeV]

0.2

0.1

0

X Neutral Hadron

O Jet

1.7

2.1

2.4

× Photon

Sanmay Ganguly (IITK)

Set2Graph proposal for flavor-tagging

Target													
	1	0	0	0									
1		0	0	0									
0	0		1	1									
0	0	1		1									
0	0	1	1										

edges

Regular Article - Experimental Physics Open Access Published: 23 June 2021

Secondary vertex finding in jets with neural networks

Jonathan Shlomi Z, Sanmay Ganguly, Eilam Gross, Kyle Cranmer, Yaron Lipman, Hadar Serviansky, Haggai Maron & Nimrod Segol

The European Physical Journal C 81, Article number: 540 (2021) Cite this article

Sanmay Ganguly (IITK)

Set2Graph model within ATLAS FTAG-2023-001

Sanmay Ganguly (IITK)

Direct physics application of the taggers

Sanmay Ganguly (IITK)

Some other examples of physics injection

$\exists r i v > hep-ph > arXiv:2204.12231$

High Energy Physics – Phenomenology

[Submitted on 26 Apr 2022 (v1), last revised 31 Jul 2022 (this version, v2)]

IRC-safe Graph Autoencoder for unsupervised anomaly detection

Oliver Atkinson, Akanksha Bhardwaj, Christoph Englert, Partha Konar, Vishal S. Ngairangbam, Michael Spannowsky

$$\omega_q^{(\mathcal{N}[i])} \hat{\Phi}^{(0)}(\hat{p}_i, \hat{p}_q) = \omega_r^{(\mathcal{N}[i])} \hat{\Phi}^{(0)}(\hat{p}_i, \hat{p}_r) + \omega_s^{(\mathcal{N}[i])} \hat{\Phi}^{(0)}(\hat{p}_i, \hat{p}_s).$$

arXiv:2006.04780 : A Bogatskiy et al

<u>arXiv:2203.06153</u> : SG et al

$$\begin{split} m_{ij}^{l} &= \phi_{e} \left(h_{i}^{l}, h_{j}^{l}, \psi(\|x_{i}^{l} - x_{j}^{l}\|^{2}), \psi(\langle x_{i}^{l}, x_{j}^{l} \rangle) \right) \\ h_{i}^{l+1} &= h_{i}^{l} + \phi_{h}(h_{i}^{l}, \sum_{j \in [N]} w_{ij} m_{ij}^{l}), \end{split}$$

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Sanmay Ganguly (IITK)

Learn the PDF through bijections

Sanmay Ganguly (IITK)

How about create some noise & do it?

Forward diffusion

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-eta_t}\mathbf{x}_{t-1}, eta_t \mathbf{I}) \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Reverse diffusion

$$p_{ heta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{ heta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \quad p_{ heta}(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; oldsymbol{\mu}_{ heta}(\mathbf{x}_t, t), oldsymbol{\Sigma}_{ heta}(\mathbf{x}_t, t))$$

Sanmay Ganguly (IITK)

Generative models : the popular species

Fig from : https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Sanmay Ganguly (IITK)

Generative models for calorimeter simulations

Detector simulation using ML

CaloGAN 1705.02355 Michela Paganini, Luke de Oliveira, Benjamin Nachman

Generator

Discriminator

Sanmay Ganguly (IITK)

Detector simulation using ML

Sanmay Ganguly (IITK)

EPiC-GAN : SciPost Phys. 15, 130 (2023) Erik Buhmann, Gregor Kasieczka, Jesse Thaler

The major gain

Sanmay Ganguly (IITK)

A generative model for Particle-flow

Sanmay Ganguly (IITK)

The task of constrained set generation

Sanmay Ganguly (IITK)

The task of constrained set generation

Sanmay Ganguly (IITK)

JET Physics + ML Lecture-4

2

1<u>M</u>

0

100

75

Generating smooth backgrounds

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/

Sanmay Ganguly (IITK)

Major thrust in immediate future : Interpretability

Interpretability is a key issue and efforts are ongoing to map the NN explainability to first principle physics intuition

Interpretability : an example attempt

$$\mathbf{R}_{j}^{(l)} = \sum_{k} rac{x_{j}A_{jk}}{\sum_{m} x_{m}A_{mk}} \mathbf{R}_{k}^{(l+1)}$$

where $\mathbf{R}_{j}^{(l)}$ represent the *R*-scores of the features of node *j* at layer *l*, while the quantity $x_j A_{jk}$ models the extent to which node *j* at layer *l*, with activation x_j , contributes to the relevance of node *k* at layer *l* + 1, where *A* is the adjacency matrix.

Neur IPS 2021. F. Mokhtar, R. Kansal et al

Explainability for MLPF

Figure 1: The flow of R-scores of node 1 across the different layers in MLPF. For MLP layers, the redistribution of R-scores follows the standard LRP rules [35, 36]. For the aggregation step in the message passing layer, the redistribution follows Equation 3. We only show three nodes for simplicity.

Feature correlation for top tagging.

arXiv 2210.04371 Ayush Khot, Mark S. Neubauer, Avik Roy

(3)

1.0			-			-				-			-				-	-				-			 -	10	
1.0	$\tau_{1}^{0.5}$	-1.0	1.00	.9 0.	.5 0.4	0.4	0.3	0.2	0.1	0.30	.20.	1 0.3	0.2	0.10	0.3 (0.10	0.0	0.3 0.	10.	0 0.2	2 0.1	0.0	-0.1 <mark>0</mark>	.3		1.0	
	τ_1^1	-1.0	1.01	.0 0.	.4 0.4	0.4	0.2	0.2	0.1	0.2 0	.10.	1 0.2	0.1	0.10	0.2 (0.10	0.0).2 O.	.10.	0 0.1	L 0.1	.0.0	-0.0 <mark>0</mark>	1			
	τ_1^2	-0.9	1.01	.0 O.	.4 0.4	0.4	0.2	0.2	0.1(0.10	.10.	1 0.1	0.1	0.00	0.10	0.10	0.0).1 0.	.10.	0 0.1	L 0.1	0.0	-0.0 <mark>0</mark>	1			
	$\tau_{2}^{0.5}$	-0.5	0.40	.41	.0 0.9	0.8		0.5	0.3	0.5 0	.40.	2 0.5	0.3	0.2	0.5	0.30	0.10).5 0.	.3 0.	1 0.4	10.3	0.1	-0.0 <mark>0</mark>	.4			
<u>^ 0</u>	τ_2^1	-0.4	0.40	.4 0	.9 1.0	1.0	0.4	0.5	0.4	0.30	.30.	2 0.2	0.2	0.20	0.2 (0.20	0.10).2 0.	.2 0.	1 0.2	2 0.2	0.1	-0.00	2		0.8	
0.0	τ_2^2	-0.4	0.40	.40	.8 1.0	1.0	0.3	0.4	0.4	0.2 0	.20.	2 0.1	. 0.2	0.20	0.10	0.20	0.10).10.	10.	10.1	L 0.1	0.1	0.0 0	1			
	$\tau_{3}^{0.5}$	-0.3	0.20	.2 0	.6 0.4	0.3	1.0	0.8	0.6	0.8 0	.60.	4 0.8	0.5	0.3	0.7 (D.5 C).2 0).70.	5 0.	2 0.1	7 0.5	0.1	-0.0 <mark>0</mark>	.5			
	τ_3^1	-0.2	0.20	.2 0	.5 0.5	0.4	0.8	1.0	1.0	0.5 0		6 0.4	0.5	0.40).4 (0.40).3 0).40.	.4 0.	3 0.3	3 0.3	0.2	-0.00	.2			
	τ_3^2	-0.1	0.10	.1 0.	.3 0.4	0.4	0.6	1.0	1.0	0.30	.60.	6 0.2	0.5	0.5	0.2	0.40).4 0).2 0.	.3 0.	3 0.1	L 0.2	0.2	0.0 0	1			
0.6	$\tau_{4}^{0.5}$	-0.3	0.20	.10	.5 0.3	0.2	0.8	0.5	0.3	1.00	.70.	5 0.9	0.6	0.4	0.9 (0.60).30).8 O.	6 0.	2 0.8	3 0.6	0.2	-0.10	5	-	0.6	
0.0	τ_4^1	-0.2	0.10	.1 0.	.4 0.3	0.2	0.6	0.6	0.6	0.71	.00.	9 0.6	0.8	0.70).5 (0.70).60).5 0.	6 0.	4 0.4	10.5	0.3	-0.00	.2			
	τ_4^2	-0.1	0.10	.1 0.	.2 0.2	0.2	0.4		0.6	0.50	.91.	0 0.3	0.8	0.8	0.3	0.60	0.6).2 0.	.4 0.	5 0.2	2 0.3	0.4	0.0 0	1			
	$\tau_{5}^{0.5}$	-0.3	0.20	.10	.5 0.2	0.1	0.8	0.4	0.2	0.90	.60.	3 1.0	0.7	0.4	0.9 (0.60).30).9 0.	6 0.	3 0.9	9 0.6	0.2	-0.10	.5			
	τ_5^1	-0.2	0.10	.1 0.	.3 0.2	0.2	0.5		0.5 (0.60	.8 0.	8 0.7	1.0	0.90	0.60	0.8 0).7 0).5 0.	.7 0.	5 0.4	10.6	0.4	-0.00	.2			
0.4	τ5	-0.1	0.10	.0 0.	.2 0.2	0.2	0.3	0.4	0.5 (0.40	.70.	8 0.4	0.9	1.00	0.3	0.70	0.8 0).2 0.	.5 0.	60.1	L 0.4	0.4	0.00	.0	-	0.4	
0.4	$\tau_{6}^{0.5}$	-0.3	0.20	.10	.5 0.2	0.1	0.7	0.4	0.2	0.90	.50.	3 0.9	0.6	0.3	1.0(0.70).31	.00.	.7 0.	3 0.9	90.7	0.2	-0.10	5			
	τ_6^1	-0.1	0.10	.1 0.	.3 0.2	0.2	0.5	0.4	0.4	0.60	.70.	6 0.6	0.8	0.7().7 :	1.00).9 ().60.	.8 0.	7 0.5	5 0.7	0.5	-0.00	.2			
	τ_6^2	-0.0	0.00	.0 0.	.10.1	0.1	0.2	0.3	0.4	0.30	.60.	6 0.3	0.7	0.80	0.3	0.91	00).2 0.	.70.	7 0.2	2 0.5	0.6	0.0 0	.0			
	$\tau_{7}^{0.5}$	-0.3	0.20	.10	.5 0.2	0.1	0.7	0.4	0.2	0.80	.50.	2 0.9	0.5	0.2	1.0 (0.60).2 1	00.	.7 0.	3 1.0	0.7	0.2	-0.10	.5		0.2	
0.2	τ †	-0.1	0.10	.10	.3 0.2	0.1	0.5	0.4	0.3	0.60	.60.	4 0.6	0.7	0.5(0.7 (0.80).70).71.	.0 0.	9 0.6	5 0.8	0.7	-0.00	.3		0.2	
0.2	τ5	-0.0	0.00	.00.	.10.1	0.1	0.2	0.3	0.3	0.20	.40.	5 0.3	0.5	0.60	0.3	0.70	0.70).30.	.91.	0 0.2	2 0.7	0.8	0.00	.0			
	τ ₈ .5	-0.2	0.10	.10	.4 0.2	0.1	0.7	0.3	0.1	0.80	.40.	2 0.9	0.4	0.1).9(0.5 C).21	.00.	.6 0.	2 1.0	0 0.7	0.3	-0.10	.5			
	τ ₈	-0.1	0.10	.10	.3 0.2	0.1	0.5	0.3	0.2	0.6 0	.50.	30.6	0.6	0.4).7(0.70).5 ()).7 ().	.80.	70.1	/ 1.0	0.9	-0.00	.3			
	τ _δ	-0.0	0.00	.00.	.10.1	. 0.1	0.1	0.20	0.20	0.20	.30.	4 0.2	0.4	0.40).2	J.5 ().60).20.	. / 0.	80.:	30.9	1.0	0.00	.0	-	0.0	
0 0	p _T ,j	-0.1	-0.00	0.0-0	.00.0	0.0	-0.0	0.0	0.0-	0.10	0.00.	0-0	1-0.0	0.0-	0.1-	0.00).0-0).1-0	.00.	0-0.	1-0.0	0.00	1.00	1			
0.0	m	-0.3	0.10	.10.	4 0.2	0.1	0.5	0.20	0.1	U.5 0	.20.	10.5	0.2	0.00	J.5 (J.2 C	.00	.50.	30.	00.	0.3	0.0	0.11	0			
		τ ^{0.5}	110	-0.5 10	τ ² τ ¹	50	, 50. 1	Чт Ч		140 140	- F	τ ^{0.5}	, H		1.02	190		171	-75	₹ <u>0</u> .5	τ ²	1 87	<u>р</u> т.,				
		-		-			-			-		•			-					•							

Sanmay Ganguly (IITK)

Major thrust in immediate future : Uncertainty

Reliable uncertainty estimation on ML based predictions are crucial for HEP Only few Bayesian methods have been tested naively.

Can we decompose and correlate the aleatoric and epistemic uncertainties with the underlying physics?

Major thrust in immediate future : Uncertainty

Sanmay Ganguly (IITK)

Anomaly detection : the general types

a. Outlier detection ("point anomalies")

low p(x)

<u>Autoencoders</u> Farina, Nakai & **DS** <u>1808.08992</u> Heimel et al <u>1808.08979</u> Cerri et al <u>1811.10276</u>

Density estimation Caron, Hendriks, Verheyen <u>2106.10164</u> b. Overdensity detection ("group anomalies")

Data vs bg test statistic D'Agnolo et al <u>1806.02350,1912.12155</u>, <u>2111.13633</u>

Enhanced bump hunts CWoLa Hunting [Collins, Howe & Nachman <u>1805.02664</u>, <u>1902.02634</u>] ANODE [Nachman & **DS** <u>2001.04990</u>] CATHODE [**DS+** Hallin et al <u>2109.00546</u>, <u>2210.14924</u>] CURTAINS [Raine et al <u>2203.09470</u>]

Slide taken from David Shih
CWoLa : a weakly supervised method

$$L_{M_1/M_2} = \frac{p_{M_1}}{p_{M_2}} = \frac{f_1 \, p_S + (1 - f_1) \, p_B}{f_2 \, p_S + (1 - f_2) \, p_B} = \frac{f_1 \, L_{S/B} + (1 - f_1)}{f_2 \, L_{S/B} + (1 - f_2)},$$

$$\partial_{L_{S/B}} L_{M_1/M_2} = (f_1 - f_2)/(f_2 L_{S/B} - f_2 + 1)^2 > 0.$$

arXiv:1708.02949

Sanmay Ganguly (IITK)

JET Physics + ML Lecture-4

ABCD background estimation with ML

arXiv > hep-ph > arXiv:2007.14400

High Energy Physics – Phenomenology [Submitted on 28 Jul 2020]

ABCDisCo: Automating the ABCD Method with Machine Learning Gregor Kasieczka, Benjamin Nachman, Matthew D. Schwartz, David Shih

$$N_{A,b}^{\text{predicted}} \equiv \frac{N_{B,a} N_{C,a}}{N_{D,a}}$$

 $N_{A,\ell} = N_{\ell} \operatorname{Pr}(f \ge f_c \text{ and } g \ge g_c | \ell)$ $N_{B,\ell} = N_{\ell} \operatorname{Pr}(f \ge f_c \text{ and } g < g_c | \ell)$ $N_{C,\ell} = N_{\ell} \operatorname{Pr}(f < f_c \text{ and } g \ge g_c | \ell)$ $N_{D,\ell} = N_{\ell} \operatorname{Pr}(f < f_c \text{ and } g < g_c | \ell),$

Find a ML driven way to find the variables f & g

Single DisCo

$$\mathcal{L}[f(X)] = \mathcal{L}_{\text{classifier}}[f(X), y] + \lambda \operatorname{dCorr}_{y=0}^{2}[f(X), X_{0}]$$

Double DisCo

$$\mathcal{L}[f,g] = \mathcal{L}_{\text{classifier}}[f(X),y] + \mathcal{L}_{\text{classifier}}[g(X),y] + \lambda \operatorname{dCorr}_{y=0}^{2}[f(X),g(X)]$$

$$\begin{split} \mathrm{dCov}^2[f,g] &= \left\langle |f - f'| \times |g - g'| \right\rangle \\ &+ \left\langle |f - f'| \right\rangle \times \left\langle |g - g'| \right\rangle - 2 \left\langle |f - f'| \times |g - g''| \right\rangle \end{split}$$

$$\mathrm{dCorr}^2[f,g] = \frac{\mathrm{dCov}^2[f,g]}{\mathrm{dCov}[f,f]\,\mathrm{dCov}[g,g]}$$

Sanmay Ganguly (IITK)

Anomaly detection with density estimation

Sanmay Ganguly (IITK)

JET Physics + ML Lecture-4

 $R(x) = rac{p_{ ext{data}}(x)}{p_{ ext{bg}}(x)}$

2307.11157

 10^{3}

 10^{4}

 10^{5}

Open datasets for testing your idea!

https://zenodo.org/records/3547722

https://lhco2020.github.io/homepage/

Calo Challenge

https://calochallenge.github.io/homepage/

CERN Open Data Portal

Documentation About

An example of next frontiers

https://pyt-team.github.io/toponetx/

Let's formulate the questions

ML is here to stay with HEP.

When looked through the lens of ML, what's are the core questions to answer for these soft signals?

Interpretability and uncertainty estimation is a corner stone which we should emphasize.

M The collider community should talk with mathematicians/comp-sc and other branches of natural science who are using the similar methods and exchange ideas.

Let's formulate the questions

ML is here to stay with HEP.

When looked through the lens of ML, what's are the core questions to answer for these soft signals?

Interpretability and uncertainty estimation is a corner stone which we should emphasize.

M The collider community should talk with mathematicians/comp-sc and other branches of natural science who are using the similar methods and exchange ideas.

Sanmay Ganguly (IITK)