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Three Pillars: Discretisation

The third pillar consists in discretising space-time
continuum.
One first replaces it by a discrete set of points called a
lattice
The lattice can be freely chosen. Some choices for D=2
are shown above
Often the hypercubic lattices are chosen for their simplicity.
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Three Pillars: Discretisation

One then replaces derivatives in the continuum Euclidean
action by appropriate finite differences.
To illustrate, let us consider a D = 1(space-time dim) ’Field
Theory’. This is actually QM of one degree of freedom x(t).
The Euclidean action can be taken to mimic a massive
scalar field theory:

SE =

∫
dx [(∂xφ)2 + m2φ2]

The lattice can be chosen to be the set of equally spaced
points along a line with spacing, say,a. xn = n · a
Even a random set of points along a line can be a bona
fide choice.
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Discretisation

The next step is replacing all derivatives of fields by finite
differences. There are many choices possible

∂xφ→
φ(x + a)− φ(x)

a
,
φ(x)− φ(x − a)

a
...

Each choice leads to a different lattice action.
Let us explicitly work out the first choice:

SE → SL = a
∑

n

(φn+1 − φn)2

a2 +m2a
∑

n

φ2
n φn ≡ φ(xn)

Since SE
~ is dimensionless, SL is also dimensionless.

Further, one scales all quantities by suitable powers of a to
make them dimensionless.
mL = m · a. The mass dimension of a scalar field in D
dimensions is D−2

2 . So φL = φ · a−1/2.
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Discretisation

It is easy to see that SL takes the form

SL = 2
∑

n

[(φL
n)2 − φL

nφ
L
n+1] + m2

L

∑
n

(φL
n)2)

We will drop the superscript L henceforth.
The path-integral now becomes

Z =

∫ ∏
n

dφne−(2+m2)
∑

n φ
2
n+2

∑
n φnφn+1

As before it is always understood that one should be
computing Z (J)
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Discretisation

This is a classical statistical mechanics partition function
for a one-dimensional chain of nearest-neighbour
interacting ’continuous’ spins xn.
Though we established this deep connection for an almost
trivial example, this mapping is generic.
D(space-time) QFT is exactly mappable to a problem in
classical statistical mechanics problem in D spatial
dimensions!
Allows a whole body of powerful analytical and numerical
techniques of CSM to investigate QFT’s
See Seiler’s monograph for an extensive coverage of how
techniques of CSM can be used to address such issues as
phase boundaries between the Higgs and Coulomb
phases etc..
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Discretisation of Abelian Gauge Theories

Let us now consider Abelian gauge
fields(electromagnetism) in Minkowski space.
We shall restrict ourselves to pure gauge case. The action
in D = 4 is

S = −1
4

∫
d4x FµνFµν Fµν = ∂µAν − ∂νAµ

Euclideanising via x0 → −ix4,A0 → iA4

SE =

∫
d4x FµνFµν ≥ 0

The original action was invariant under

Aµ → Aµ + ∂µ Λ(x)
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Discretisation of Abelian Gauge Theories

We need to find discretised forms of both the action and
the gauge transformation.
Introduce the forward derivative

∆µ f (x) = f (x + aeµ)− f (x)

With its help we can discretise the Fµν :

Fµν →
1
a

(∆µ Aν −∆ν Aµ)

One choice for the discretised gauge transformations is

Aµ → Aµ +
1
a

∆µ Λ(x)

It is easily verified that the discretised action is invariant
under the discretised gauge transformations.

N.D. Hari Dass



Discretisation of Abelian Gauge Theories

As before, all dimensionfull quantities are scaled by
suitable powers of the lattice spacing a to get their
dimensionless versions:

AL
µ = a · Aµ F L

µν = a2 · Fµν

Then

F L
µν = ∆µ AL

ν − ∆ν Al
µ AL

µ → AL
µ + ∆µ Λ(x)

The resulting abelian lattice gauge theory is

Z =

∫ ∏
n,µ

dAn,µ e−
∑

F 2
µν

We will encounter a very different discretisation of Abelian
gauge theories shortly. This one can be called an
Lie-algebra discretisation. Also called non-compact case
Configurations differing by gauge transformations make
the same contribution and there are infinitely many leading
to a divergence of Z. Gauge-fixing.
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Non-Abelian Gauge Theories

Now we turn to a discussion of Non-abelian gauge theories
on the lattice.
We shall consider the so called compact Lie Groups like
SU(N) or U(N).
dim(G) is the dimension of the group. For SU(2) it is 3, for
SU(3) it is 8...
Instead of a single Aµ of the abelian case we now have as
many Aµ’s as dim(G): Aa

µ where the group index a takes on
dim(G) values.
The Hermitian generators La satisfy the Lie-algebra

[La,Lb] = i f c
ab Lc Trf (LaLb) =

1
2
δab

f c
ab are the structure constants of the Lie Algebra.
It is more convenient to use the Lie-algebra valued
Aµ = La Aa

µ.
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Non-Abelian Gauge Theories

The non-abelian gauge transformation:

A′µ = g(x)Aµ g†(x) − i
g0

g(x)∂µ g(x)†

The g(x) are group elements for each x. They play the role
of Λ(x) of the abelian case.
The Lie-algebra valued field strengths are given by

Fµν = ∂µAν − ∂νAµ + ig0[Aµ,Aν ]

Under the gauge transformations the field strenths
transform as

F′µν = g(x)Fµνg(x)†

The field strengths, unlike the abelian case, are not
invariant but only transform covariantly

N.D. Hari Dass



Non-Abelian Gauge Theories

Let us attempt to discretise the non-abelian gauge field
theory(Euclideanisation assumed).
If we just mimick what we did in the abelian case:

Fµν = ∆µAµ − ∆νAν + ig0[Aµ,Aν ]

and

A′µ = g(x)Aµ g(x)† − i
g0

g(x)
g†(x + aeµ) − g†(x)

a

The field strengths do not transform correctly!
This is not due to the deficiency of this particular choice -
no matter what one does, as long as the variables are Aµ,
the problem can not be fixed!
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Non-Abelian Gauge Theories

The resolution rests on some fundamental mathematical
properties of group connections!
Of fundamental importance to our goal is the concept of
holonomy:

Ux,y ≡ P eig0
∫ y

x Aµ dxµ

The integration is along some specified curve Γ joining the
two end points.
The meaning of the path ordered exponential: divide the
curve into a very large number of segments
xX1, x1x2, . . . xny . Then

P e
∫ y

x ≡ (e
∫ x1

x )(e
∫ x2

x1 ) . . . (e
∫ y

xn )

Most amazingly, the infinitesimal holonomies transform
under gauge transformations as

U ′x,x′ = g(x) Ux,x′ g(x ′)†
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Non-Abelian Gauge Theories

This, on using that each g(x) satisfies g(x)† g(x) = 1,
leads to the transformation law of all holonomies:

U ′x,y = g(x)Ux,yg(y)†

Now the recipe for constructing non-abelian gauge
theories on the lattice is to use holonomies along each link
of the hypercubic lattice as the gauge field variable called
Link Variables.
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Compact vs Non-compact

In the abelian case, the gauge fields were Aµ in the range
[−∞,∞] with total volume

∫
dAµ =∞ – a noncompact

space
The gauge parameters were also in the same range with
their space also being noncompact
In the nonabelian case, the gauge parameters are the
group elements g(x)

Their total ’volume’ is given by the group invariant Haar
Measure:

∫
dg(x) = 1 – a compact space

The gauge fields are also the link variables which are
group elements with total volume

∫
dU = 1, also compact

Both have to be compact or noncompact.
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Invariants of non-abelian gauge theories:continuum

The field strengths Fµν transforming as F ′ = g F g† means
FF ,FFF all transform covariantly.
Taking traces, e.g. Tr FF, using gg† = 1, are group
invariants
An invariant action:

L = −1
2

TrFµνFµν = −1
4

F a
µν Fµν,a
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Invariants of non-abelian gauge theories:Lattice

The Wegener-Wilson Loops: Take any closed loop built
sequentially out of link variables

W = U1,2U2,3 . . . Un,1

Under gauge transformations W ′ = gWg† and Tr W is
gauge invariant.
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