Foundations of Lattice Field Theories-2

N.D. Hari Dass

¹Retd.Professor, IMSc,Chennai..

IMSc Spring School,24Feb - 7 Mar 2025, Chennai

・ロト ・ 一下・ ・ ヨト・

프 > 프

N.D. Hari Dass

Three Pillars: Discretisation

- The third pillar consists in discretising space-time continuum.
- One first replaces it by a discrete set of points called a lattice
- The lattice can be freely chosen. Some choices for D=2 are shown above
- Often the hypercubic lattices are chosen for their simplicity.

Three Pillars: Discretisation

- One then replaces derivatives in the continuum Euclidean action by appropriate finite differences.
- To illustrate, let us consider a D = 1(space-time dim) 'Field Theory'. This is actually QM of one degree of freedom x(t).
- The Euclidean action can be taken to mimic a massive scalar field theory:

$$S_E = \int dx [(\partial_x \phi)^2 + m^2 \phi^2]$$

ヘロト ヘ戸ト ヘヨト ヘヨト

- The lattice can be chosen to be the set of equally spaced points along a line with spacing, say, a. $x_n = n \cdot a$
- Even a random set of points along a line can be a bona fide choice.

• The next step is replacing all derivatives of fields by finite differences. There are many choices possible

$$\partial_x \phi \to \frac{\phi(x+a) - \phi(x)}{a}, \frac{\phi(x) - \phi(x-a)}{a}...$$

- Each choice leads to a different lattice action.
- Let us explicitly work out the first choice:

$$S_E \rightarrow S^L = a \sum_n \frac{(\phi_{n+1} - \phi_n)^2}{a^2} + m^2 a \sum_n \phi_n^2 \qquad \phi_n \equiv \phi(x_n)$$

- Since SE //h is dimensionless, S^L is also dimensionless.
 Further, one scales all quantities by suitable powers of a to make them dimensionless.
- *m^L* = *m* · *a*. The mass dimension of a scalar field in D dimensions is ^{D-2}/₂. So φ^L = φ · a^{-1/2}.

• It is easy to see that S^L takes the form

$$S^{L} = 2\sum_{n} [(\phi_{n}^{L})^{2} - \phi_{n}^{L}\phi_{n+1}^{L}] + m_{L}^{2}\sum_{n} (\phi_{n}^{L})^{2})$$

- We will drop the superscript L henceforth.
- The path-integral now becomes

$$Z = \int \prod_{n} \boldsymbol{d}\phi_{n} \boldsymbol{e}^{-(2+m^{2})\sum_{n}\phi_{n}^{2}+2\sum_{n}\phi_{n}\phi_{n+1}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 As before it is always understood that one should be computing Z(J)

Discretisation

- This is a classical statistical mechanics partition function for a one-dimensional chain of nearest-neighbour interacting 'continuous' spins x_n.
- Though we established this deep connection for an almost trivial example, this mapping is generic.
- D(space-time) QFT is exactly mappable to a problem in classical statistical mechanics problem in D spatial dimensions!
- Allows a whole body of powerful analytical and numerical techniques of CSM to investigate QFT's
- See Seiler's monograph for an extensive coverage of how techniques of CSM can be used to address such issues as phase boundaries between the Higgs and Coulomb phases etc..

Discretisation of Abelian Gauge Theories

- Let us now consider Abelian gauge fields(electromagnetism) in Minkowski space.
- We shall restrict ourselves to pure gauge case. The action in D = 4 is

$$S = -rac{1}{4}\int\,d^4x\,F_{\mu
u}F^{\mu
u} \qquad F_{\mu
u} = \partial_\mu A_
u \, - \, \partial_
u A_\mu$$

• Euclideanising via $x^0 \rightarrow -ix_4, A_0 \rightarrow iA_4$

$$S_E = \int d^4x F_{\mu
u}F_{\mu
u} \ge 0$$

The original action was invariant under

$$A_{\mu}
ightarrow A_{\mu} + \partial_{\mu} \Lambda(x)$$

イロト イポト イヨト イヨト

Discretisation of Abelian Gauge Theories

- We need to find discretised forms of both the action and the gauge transformation.
- Introduce the forward derivative

$$\Delta_{\mu} f(x) = f(x + ae_{\mu}) - f(x)$$

• With its help we can discretise the $F_{\mu\nu}$:

$$F_{\mu
u}
ightarrow \, rac{1}{a} (\Delta_\mu \, A_
u - \Delta_
u \, A_\mu)$$

One choice for the discretised gauge transformations is

$${\it A}_{\mu}
ightarrow \, {\it A}_{\mu} + rac{1}{a} \Delta_{\mu} \, \Lambda(x)$$

 It is easily verified that the discretised action is invariant under the discretised gauge transformations.

Discretisation of Abelian Gauge Theories

 As before, all dimensionfull quantities are scaled by suitable powers of the lattice spacing a to get their dimensionless versions:

$$A^L_\mu = a \cdot A_\mu \qquad F^L_{\mu
u} = a^2 \cdot F_{\mu
u}$$

Then

$$F^L_{\mu
u} = \Delta_\mu \, A^L_
u \, - \, \Delta_
u \, A^I_\mu \qquad A^L_\mu o \, A^L_\mu + \Delta_\mu \, \Lambda(x)$$

• The resulting abelian lattice gauge theory is

$$Z = \int \prod_{\mathbf{n},\mu} dA_{\mathbf{n},\mu} e^{-\sum F_{\mu
u}^2}$$

- We will encounter a very different discretisation of Abelian gauge theories shortly. This one can be called an Lie-algebra discretisation. Also called non-compact case
- Configurations differing by gauge transformations make the same contribution and there are infinitely many leading to a divergence of Z. Gauge-fixing

- Now we turn to a discussion of Non-abelian gauge theories on the lattice.
- We shall consider the so called compact Lie Groups like SU(N) or U(N).
- dim(G) is the dimension of the group. For SU(2) it is 3, for SU(3) it is 8...
- Instead of a single A_μ of the abelian case we now have as many A_μ's as dim(G): A^a_μ where the group index a takes on dim(G) values.
- The Hermitian generators L_a satisfy the Lie-algebra

$$[L_a, L_b] = i f_{ab}^c L_c \qquad Tr_f(L_a L_b) = \frac{1}{2} \delta_{ab}$$

- f_{ab}^c are the structure constants of the Lie Algebra.
- It is more convenient to use the Lie-algebra valued $\mathbf{A}_{\mu} = L_a A_{\mu}^a$.

• The non-abelian gauge transformation:

$$oldsymbol{\mathsf{A}}_{\mu}^{\prime}=g(x)oldsymbol{\mathsf{A}}_{\mu}\,g^{\dagger}(x)\,-rac{i}{g_{0}}\,g(x)\partial_{\mu}\,g(x)^{\dagger}$$

- The g(x) are group elements for each x. They play the role of Λ(x) of the abelian case.
- The Lie-algebra valued field strengths are given by

$$\mathbf{F}_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu} + ig_{0}[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}]$$

Under the gauge transformations the field strenths transform as

$${f F}_{\mu
u}^\prime\,=\,g(x){f F}_{\mu
u}g(x)^\dagger$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

 The field strengths, unlike the abelian case, are not invariant but only transform covariantly

- Let us attempt to discretise the non-abelian gauge field theory(Euclideanisation assumed).
- If we just mimick what we did in the abelian case:

$$\mathbf{F}_{\mu
u} = \Delta_{\mu}\mathbf{A}_{\mu} - \Delta_{
u}\mathbf{A}_{
u} + \mathit{ig}_{0}[\mathbf{A}_{\mu},\mathbf{A}_{
u}]$$

and

$$oldsymbol{\mathsf{A}}'_{\mu}=g(x)oldsymbol{\mathsf{A}}_{\mu}\,g(x)^{\dagger}\,-\,rac{i}{g_{0}}\,g(x)rac{g^{\dagger}(x+aoldsymbol{e}_{\mu})\,-\,g^{\dagger}(x)}{a}$$

- The field strengths do not transform correctly!
- This is not due to the deficiency of this particular choice no matter what one does, as long as the variables are A_μ, the problem can not be fixed!

ヘロン 人間 とくほ とくほ とう

- The resolution rests on some fundamental mathematical properties of group connections!
- Of fundamental importance to our goal is the concept of holonomy:

$$U_{\mathbf{x},\mathbf{y}}\equiv \ P \, e^{ig_0\int_{\mathbf{x}}^{\mathbf{y}} \mathbf{A}_\mu \, dx^\mu}$$

- The integration is along some specified curve Γ joining the two end points.
- The meaning of the path ordered exponential: divide the curve into a very large number of segments xX₁, x₁x₂,... x_ny. Then

$$P e^{\int_{x}^{y}} \equiv (e^{\int_{x}^{x_{1}}})(e^{\int_{x_{1}}^{x_{2}}}) \dots (e^{\int_{x_{n}}^{y}})$$

 Most amazingly, the infinitesimal holonomies transform under gauge transformations as

$$U'_{\mathbf{x},\mathbf{x}'} = g(x) U_{\mathbf{x},\mathbf{x}'} g(x')^{\dagger}$$

• This, on using that each g(x) satisfies $g(x)^{\dagger} g(x) = 1$, leads to the transformation law of all holonomies:

$$U'_{\mathbf{x},\mathbf{y}} = g(x)U_{\mathbf{x},\mathbf{y}}g(y)^{\dagger}$$

 Now the recipe for constructing non-abelian gauge theories on the lattice is to use holonomies along each link of the hypercubic lattice as the gauge field variable called Link Variables.

- In the abelian case, the gauge fields were A_{μ} in the range $[-\infty, \infty]$ with total volume $\int dA_{\mu} = \infty$ a noncompact space
- The gauge parameters were also in the same range with their space also being noncompact
- In the nonabelian case, the gauge parameters are the group elements g(x)
- Their total 'volume' is given by the group invariant Haar Measure: $\int dg(x) = 1 a$ compact space
- The gauge fields are also the link variables which are group elements with total volume $\int dU = 1$, also compact

イロン 不良 とくほう 不良 とうほ

• Both have to be compact or noncompact.

Invariants of non-abelian gauge theories:continuum

- The field strengths $\mathbf{F}_{\mu\nu}$ transforming as $F' = g F g^{\dagger}$ means *FF*, *FFF* all transform covariantly.
- Taking traces, e.g. Tr FF, using gg[†] = 1, are group invariants
- An invariant action:

$$\mathcal{L}=-rac{1}{2}\mathit{Tr}\mathbf{F}_{\mu
u}\mathbf{F}^{\mu
u}=-rac{1}{4}\mathit{F}^{a}_{\mu
u}\mathit{F}^{\mu
u,a}$$

 The Wegener-Wilson Loops: Take any closed loop built sequentially out of link variables

$$W=U_{1,2}U_{2,3}\ldots U_{n,1}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

 Under gauge transformations W' = gWg[†] and Tr W is gauge invariant.