Quantum Chromodynamics

lecture IV

Sven-Olaf Moch

Universität Hamburg

IMSc Spring School on High Energy Physics

Sven-Olaf Moch

European Research Council Established by the European Commission

Chennai, Feb 27, 2025

Quantum Chromodynamics - p.1

Plan

- Introduction to QCD
 Monday, February 24, 2025
- QCD at work: infrared safety and jets Tuesday, February 25, 2025
- QCD at work: factorization and evolution *Wednesday, February 26, 2025*
- Deep structure of proton Thursday, February 27, 2025

QCD evolution

- Evolution formulates dependence of cross sections for observable on momentum transfer
- Classic example: scaling violations of structure functions Gross, Wilczek '73; Politzer '73
- Physical cross section in factorization ansatz cannot depend on μ $Q^2 \sigma_{\text{phys}} (Q) = \hat{\sigma}_{\text{pt}} (Q/\mu, \alpha_s(\mu)) \otimes f(\mu)$
 - factorization scale μ arbitrary $\mu \frac{d \sigma_{\text{phys}}}{d\mu} = 0$
- Immediate consequence parton evolution

Altarelli, Parisi '77

$$\mu \frac{d f(\mu)}{d\mu} = P(\alpha_s(\mu)) \otimes f(\mu) + \mathcal{O}\left(\frac{1}{Q^2}\right)$$
$$\mu \frac{d \hat{\sigma}_{\rm pt} \left(Q/\mu, \alpha_s(\mu)\right)}{d\mu} = -P(\alpha_s(\mu)) \otimes \hat{\sigma}_{\rm pt} \left(Q/\mu, \alpha_s(\mu)\right) + \mathcal{O}\left(\frac{1}{Q^2}\right)$$

PDF evolution from renormalization group equation

QCD evolution

- Evolution formulates dependence of cross sections for observable on momentum transfer
- Classic example: scaling violations of structure functions Gross, Wilczek '73; Politzer '73
- Physical cross section in factorization ansatz cannot depend on μ $Q^2 \sigma_{\rm phys} (Q) = \hat{\sigma}_{\rm pt} (Q/\mu, \alpha_s(\mu)) \otimes f(\mu)$

 $\mu \frac{d f(\mu)}{d\mu} = \left(P\left(\alpha_s(\mu)\right) \otimes f(\mu) + \mathcal{O}\left(\frac{1}{Q^2}\right) \right)$ $\mu \frac{d \hat{\sigma}_{\rm pt}\left(Q/\mu, \alpha_s(\mu)\right)}{d\mu} = -P\left(\alpha_s(\mu)\right) \otimes \hat{\sigma}_{\rm pt}\left(Q/\mu, \alpha_s(\mu)\right) + \mathcal{O}\left(\frac{1}{Q^2}\right)$

- factorization scale μ arbitrary $\mu \frac{d \sigma_{\text{phys}}}{d\mu} = 0$
- Immediate consequence parton evolution

Altarelli, Parisi '77

Mass factorization

- NLO correction to Drell-Yan process
 - absorb collinear divergence $P_{qq}^{(0)}$ in renormalized parton distributions

$$\hat{\sigma}_{q\bar{q}\to V}^{(1),\text{bare}}(x) = \frac{\alpha_s}{4\pi} \left(\frac{\mu^2}{M_V^2}\right)^{\epsilon} \left\{\frac{1}{\epsilon} 2P_{qq}^{(0)}(x) + \hat{\sigma}_{q\bar{q}\to V}^{(1)}(x) + \mathcal{O}(\epsilon)\right\}$$

$$f_q^{p,\text{ren}}(x,\mu_F^2) = f_q^{p,\text{bare}}(x) - \frac{\alpha_s}{4\pi} \frac{1}{\epsilon} \left(\frac{\mu^2}{\mu_F^2}\right)^{\epsilon} \left[P_{qq}^{(0)}(x) \otimes f_q^{p,\text{bare}}\right](x)$$

QCD evolution

Scale evolution of parton distributions

• use $\frac{d}{d \ln \mu_F^2} f_q^{p,\text{bare}}(x) = 0$ to derive QCD evolution equation

$$\frac{d}{d\ln\mu_F^2} f_q^{p,\mathrm{ren}}(x,\mu_F^2) = \left[P_{qq}^{(0)}(x) \otimes f_q^{p,\mathrm{ren}} \right](x,\mu_F^2)$$

Parton evolution

Feynman diagrams in leading order

Proton in resolution 1/Q
 sensitive to lower momentum partons

- Evolution equations for parton distributions f_i
 - predictions from fits to reference processes (universality)

$$\frac{d}{d\ln\mu^2}f_i(x,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2)\right](x)$$

Splitting functions P up to N³LO (work in progress)

$$P = \alpha_s P^{(0)} + \alpha_s^2 P^{(1)} + \alpha_s^3 P^{(2)} + \alpha_s^4 P^{(3)} + \dots$$

NNLO: standard approximation

Complete set of splitting functions and PDFs

- Evolution equations
 - non-singlet $(2n_f 1 \text{ scalar})$ and singlet $(2 \times 2 \text{ matrix})$ equations

$$\frac{d}{d\ln\mu^2}f_i(x,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2)\right](x)$$

Complete set of splitting functions and PDFs

- Evolution equations
 - non-singlet $(2n_f 1 \text{ scalar})$ and singlet $(2 \times 2 \text{ matrix})$ equations

$$\frac{d}{d\ln\mu^2}f_i(x,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2)\right](x)$$

• Non-singlet and singlet distributions q^{\pm} , $q^{
m v}$ and $q_{
m s}$, g

$$\begin{array}{lcl} q_{\mathrm{ns},ik}^{\pm} &=& q_i \pm \bar{q}_i - (q_k \pm \bar{q}_k) & \text{flavour asymmetries} \\ q_{\mathrm{ns}}^{\mathrm{v}} &=& \sum_{r=1}^{n_f} (q_r - \bar{q}_r) & \text{total valence distribution} \\ q_{\mathrm{s}} &=& \sum_{r=1}^{n_f} (q_r + \bar{q}_r) & \text{flavour singlet distribution, } f_i = \begin{pmatrix} q_{\mathrm{s}} \\ g \end{pmatrix} \end{array}$$

Complete set of splitting functions and PDFs

- Evolution equations
 - non-singlet $(2n_f 1 \text{ scalar})$ and singlet $(2 \times 2 \text{ matrix})$ equations

$$\frac{d}{d\ln\mu^2}f_i(x,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2)\right](x)$$

• Non-singlet and singlet distributions q^{\pm} , $q^{
m v}$ and $q_{
m s}$, g

$$\begin{aligned} q_{\mathrm{ns},ik}^{\pm} &= q_i \pm \bar{q}_i - (q_k \pm \bar{q}_k) & \text{flavour asymmetries} \\ q_{\mathrm{ns}}^{\mathrm{v}} &= \sum_{\substack{r=1\\n_f}}^{n_f} (q_r - \bar{q}_r) & \text{total valence distribution} \\ q_{\mathrm{s}} &= \sum_{\substack{r=1\\r=1}}^{n_f} (q_r + \bar{q}_r) & \text{flavour singlet distribution, } f_i = \begin{pmatrix} q_{\mathrm{s}} \\ g \end{pmatrix} \end{aligned}$$

Splitting function combinations

$$P_{\rm ns}^{\pm}, \qquad P_{\rm ns}^{\rm v} = P_{\rm ns}^{-} + P_{\rm ns}^{\rm s} \qquad \text{non-singlet}$$

$$P_{\rm s} = \begin{pmatrix} P_{\rm qq} & P_{\rm qg} \\ P_{\rm gq} & P_{\rm gg} \end{pmatrix}, \qquad P_{\rm qq} = P_{\rm ns}^{+} + P_{\rm ps} \qquad \text{singlet}$$

Parton distributions in proton

- Parameterization (bulk of data from deep-inelastic scattering)
 - structure function $F_2 \longrightarrow$ quark distribution
 - scale evolution (perturbative QCD) \longrightarrow gluon distribution

Parton distributions in proton

- Parameterization (bulk of data from deep-inelastic scattering)
 - structure function $F_2 \longrightarrow$ quark distribution
 - scale evolution (perturbative QCD) \longrightarrow gluon distribution

J. Ralston (Phys.Lett. B172 (1986) 430)

Pocket partonometer

LHAPDF database

- Essential tool for implementation of parton distribution functions in wide range of analyses https://www.lhapdf.org/
- **Purpose:** Standardized access to PDFs for high-energy physics
- Compatibility: Supports various PDF sets from collaborations like ABMP, CTEQ, MSHT, NNPDF, etc
- Interfacing: Can be integrated with multiple event generators and numerical tools
- Uncertainty Quantification: Provides central values and uncertainty measures for PDFs
- Versioning: Regularly updated to include new PDF sets and improvements
- **Documentation:** Extensive guides and tutorials for users of all skill levels

Parton content of the proton

The LHC

• Highest energies at colliders until 203x

Parton kinematics at LHC

Information on proton structure depends on kinematic coverage

• LHC run at $\sqrt{s} = 13 \text{ TeV}$

 parton kinematics well covered by HERA and fixed target experiments

• Parton kinematics with $x_{1,2} = M/\sqrt{S}e^{\pm y}$

- forward rapidities sensitive to small-x
- Cross section depends on convolution of parton distributions
 - small-x part of f_i and large-x PDFs f_j

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \left[\dots\right]$$

Parton kinematics at EIC

EIC run at $\sqrt{s} = 140 \text{ GeV}$

- *ep*-collisions at EIC cover large part of phase space relevant for LHC
- overlap with HERA and fixed target experiments

Novel measurements at EIC

- 3D-images of hadron in position and momentum space (including spin)
- Measurements with unprecedented precision

Parton kinematics at LHeC

LHeC run at $\sqrt{s} = 1.3$ TeV

 significant reach beyond HERA kinematics

New QCD regime accessible

• exploration of parton dynamics at small $x \simeq 10-6$

Parton kinematics at FCC-hh

- FCC-hh run at $\sqrt{s} = 100 \text{ TeV}$
 - parton kinematics way beyond LHC Watch the scales on axes of plot!
- Significant sensitivity of parton dynymics at small-x
 - low scales Q and forward rapidities probe $x \simeq 10^{-7}$
 - high scales $Q \simeq 10 \dots 50$ TeV need PDFs at large $x \simeq 0.1 \dots 0.8$

Data in global PDF fits

Data sets considered in ABMP16 analysis

Alekhin, Blümlein, S.M., Placakyte '17

• Analysis of world data for deep-inelastic scattering, fixed-target data for Drell-Yan process and collider data (W^{\pm} -, Z-bosons, top-quarks)

- inclusive DIS data HERA, BCDMS, NMC, SLAC (NDP = 2155)
- semi-inclusive DIS charm-, bottom-quark data HERA (NDP = 81)
- Drell-Yan data (fixed target) E-605, E-866 (NDP = 158)
- neutrino-nucleon DIS (di-muon data) CCFR/NuTeV, CHORUS, NOMAD

(NDP = 232)

- W^{\pm} -, Z-boson production data D0, ATLAS, CMS, LHCb (NDP = 172)
- Inclusive top-quark hadro-production CDF&D0, ATLAS, CMS

(NDP = 24)

Iterative cycle of PDF fits

- i) check of compatibility of new data set with available world data
- ii) study of potential constraints due to addition of new data set to fit
- iii) perform high precision measurement of PDFs, strong coupling $\alpha_s(M_Z)$ and heavy quark masses m_c , m_b , m_t ,

ABMP16 PDF ansatz

- PDFs parameterization at scale $\mu_0 = 3 \text{GeV}$ in scheme with $n_f = 3$ Alekhin, Blümlein, S.M., Placakyte '17
 - ansatz for valence-/sea-quarks, gluon

$$\begin{aligned} xq_v(x,\mu_0^2) &= \frac{2\delta_{qu} + \delta_{qd}}{N_q^v} x^{a_q} (1-x)^{b_q} x^{P_{qv}(x)} \\ xq_s(x,\mu_0^2) &= x\bar{q}_s(x,\mu_0^2) = A_{qs} (1-x)^{b_{qs}} x^{a_{qs}P_{qs}(x)} \\ xg(x,\mu_0^2) &= A_g x^{a_g} (1-x)^{b_g} x^{a_g} P_{g}(x) \end{aligned}$$

- strange quark is taken in charge-symmetric form
- function $P_p(x)$

$$P_p(x) = (1 + \gamma_{-1,p} \ln x) \left(1 + \gamma_{1,p} x + \gamma_{2,p} x^2 + \gamma_{3,p} x^3 \right) ,$$

- 29 parameters in fit including $\alpha_s^{(n_f=3)}(\mu_0=3 \text{ GeV}), m_c, m_b$ and m_t
- simultaneous fit of higher twist parameters (twist-4)
- Ansatz provides sufficient flexibility; no additional terms required to improve the quality of fit

Quality of fit

Statistical tests

- Goodness-of-fit estimator
 - χ^2 values compared to number of data points (typically a few thousand in global fit)

Covariance matrix

- Positive-definite covariance matrix
 - correlations for fit parameters of ABMP16 PDFs

	a _u	b _u	$\gamma_{1,u}$	$\gamma_{2,u}$	<i>γ</i> _{3,<i>u</i>}	a _d	b_d	$\gamma_{1,d}$	$\gamma_{2,d}$	$\gamma_{3,d}$		a _{us}	Γ
a_u	1.0	0.7617	0.9372	- 0.5078	0.4839	0.4069	0.3591	0.4344	- 0.3475	0.0001	a_u	- 0.0683	ŀ
b_u	0.7617	1.0	0.6124	- 0.1533	- 0.0346	0.3596	0.2958	0.3748	- 0.2748	0.0001	b_u	- 0.0081	l
$\gamma_{1,u}$	0.9372	0.6124	1.0	- 0.7526	0.7154	0.2231	0.2441	0.2812	- 0.2606	0.0001	γ1, <i>u</i>	- 0.2094	l
γ2,и	- 0.5078	- 0.1533	- 0.7526	1.0	- 0.9409	0.2779	0.2276	0.2266	- 0.1860	0.0	γ2,u	0.3881	l
γз,и	0.4839	- 0.0346	0.7154	- 0.9409	1.0	- 0.1738	- 0.1829	- 0.1327	0.1488	0.0	γ3,u	- 0.3206	l
a_d	0.4069	0.3596	0.2231	0.2779	- 0.1738	1.0	0.7209	0.9697	- 0.6529	0.0001	a_d	0.2266	l
b_d	0.3591	0.2958	0.2441	0.2276	- 0.1829	0.7209	1.0	0.7681	- 0.9786	- 0.0001	b_d	0.1502	l
$\gamma_{1,d}$	0.4344	0.3748	0.2812	0.2266	- 0.1327	0.9697	0.7681	1.0	- 0.7454	0.0002	$\gamma_{1,d}$	0.2000	l
$\gamma_{2,d}$	- 0.3475	- 0.2748	- 0.2606	- 0.1860	0.1488	- 0.6529	- 0.9786	- 0.7454	1.0	- 0.0002	$\gamma_{2,d}$	- 0.1293	l
$\gamma_{3,d}$	0.0001	0.0001	0.0001	0.0	0.0	0.0001	- 0.0001	0.0002	- 0.0002	1.0	$\gamma_{3,d}$	0.0	l
aus	- 0.0683	- 0.0081	- 0.2094	0.3881	- 0.3206	0.2266	0.1502	0.2000	- 0.1293	0.0	aus	1.0	l
b_{us}	- 0.3508	- 0.3089	- 0.3462	0.0906	- 0.0537	- 0.1045	- 0.2000	- 0.2241	0.2798	0.0	b_{us}	- 0.3156	l
$\gamma_{-1,us}$	0.2296	0.1387	0.3367	- 0.4043	0.3474	- 0.1171	- 0.1127	- 0.0810	0.0767	0.0	$\gamma_{-1,us}$	- 0.8947	l
$\gamma_{1,us}$	- 0.4853	- 0.4119	- 0.3844	- 0.0365	0.0064	- 0.4380	- 0.3592	- 0.4957	0.3771	- 0.0001	$\gamma_{1,us}$	- 0.5310	l
A_{us}	0.0506	0.0807	- 0.0949	0.3198	- 0.2560	0.2527	0.1648	0.2350	- 0.1509	0.0	A_{us}	0.9719	l
a_{ds}	- 0.0759	- 0.0443	- 0.0951	0.0263	- 0.0382	- 0.2565	- 0.2541	- 0.2666	0.2380	0.0	a_{ds}	0.2849	l
b_{bs}	0.0452	- 0.0197	0.0345	- 0.0589	0.0683	- 0.2084	0.0190	- 0.1841	- 0.0522	0.0	bbs	0.0241	l
$\gamma_{1,ds}$	- 0.0492	- 0.0809	0.0101	- 0.1791	0.1309	- 0.5576	- 0.2029	- 0.4584	0.0946	0.0	$\gamma_{1,ds}$	- 0.0470	l
A_{ds}	- 0.1980	- 0.1262	- 0.2349	0.1526	- 0.1428	- 0.1113	- 0.2167	- 0.1739	0.2407	0.0	A_{ds}	0.2983	
ass	- 0.2034	- 0.1285	- 0.2362	0.2328	- 0.2080	0.0960	0.1596	0.0661	- 0.1054	0.0	ass	0.4131	
b _{ss}	- 0.1186	- 0.0480	- 0.1532	0.1549	- 0.1536	0.0486	0.1508	0.0267	- 0.1161	0.0	b _{ss}	0.2197	
A_{ss}	- 0.1013	- 0.0411	- 0.1458	0.1802	- 0.1625	0.1216	0.1678	0.0924	- 0.1196	0.0	A_{ss}	0.3627	
a_g	0.0046	- 0.0374	0.1109	- 0.1934	0.1653	- 0.0288	- 0.0122	0.0053	0.0059	0.0	a_g	- 0.2570	
b_g	0.2662	0.3141	0.1579	- 0.0050	- 0.0207	0.0973	0.0870	0.0646	- 0.0666	0.0	b_g	- 0.1419	l
$\gamma_{1,g}$	0.2008	0.2274	0.0706	0.0876	- 0.0835	0.0919	0.0574	0.0493	- 0.0364	0.0	$\gamma_{1,g}$	- 0.0241	l
$\alpha_s^{(n_f=3)}(\mu_0)$	0.1083	- 0.0607	0.0848	- 0.0250	0.0765	0.0763	- 0.0306	0.0725	0.0243	0.0	$\alpha_s^{(n_f=3)}(\mu_0)$	0.0954	
$m_c(m_c)$	- 0.0006	0.0170	- 0.0104	0.0206	- 0.0201	- 0.0123	- 0.0161	- 0.0114	0.0108	0.0	$m_c(m_c)$	0.0704	
$m_b(m_b)$	0.0661	0.0554	0.0605	- 0.0367	0.0287	- 0.0116	0.0029	- 0.0074	- 0.0051	0.0	$m_b(m_b)$	- 0.0183	
$m_t(m_t)$	- 0.1339	- 0.2170	- 0.0816	0.0081	0.0250	- 0.0616	- 0.0813	- 0.0491	0.0736	0.0	$m_t(m_t)$	0.0641	l

0.3508 0.2296 0.4853 0.0506 - 0.0759 0.0452 - 0.0492 0.1980 - 0.2034 0.3089 0.1387 0.4119 0.0807 0.0443 0.0197 - 0.0809 0.1262 0.1285 0.3462 0.3844 - 0.0949 - 0.0951 0.0345 0.0101 0.2349 -0.2362 0 3367 0.0906 0.4043 0.0365 0.3198 0.0263 0.0589 0.1791 0.1526 0.2328 0.0537 0.0064 - 0.2560 - 0.0382 0.0683 0.1309 0.1428 - 0.2080 0 3474 0.1045 0.1171 0.4380 0.2527 - 0.2565 0.2084 - 0.5576 - 0.1113 0.0960 0.2541 0.0190 0.3592 0.1648 - 0.2029 0.2167 0.1596 0.2000 0 1 1 2 7 0.2241 0.0810 0 4957 0.2350 - 0.2666 0.1841 0.4584 0 1739 0.066 0.3771 0.1509 0.2380 0.0522 0.0946 0.2407 0.1054 0.2798 0.0767 - 0.0001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9719 0.2849 0.0241 - 0.0470 0.3156 - 0.8947 0.5310 0.2983 0.4131 0.1372 0.8258 - 0.3995 0.0467 0.0221 - 0.1190 0.1856 0.0291 - 0.7829 0.0156 0.0501 0.2117 0.1372 0.2611 - 0.1695 0 7 1 9 1 1.0 0.8258 0.2611 0.6479 0.0086 0.0076 0.1460 0.0781 0.0010 0.2983 0.0515 0.0404 0.3055 0.2811 0 3995 0.7829 0.6479 1.0 0.0467 - 0 1695 0.0086 0.2983 1.0 0.1608 0.0719 0.9152 0.2941 0.0221 0.0156 0.0076 0.0515 - 0.1608 1.0 0.7834 0.3022 0.0390 0.1460 - 0.0404 0.0719 0.7834 0.1838 - 0.1373 0.1190 1.0 0.0501 0.1856 0.0781 0.3055 0.9152 - 0.3022 - 0.1838 1.0 - 0.1833 0.2117 0.0010 0.2811 - 0.2941 0.0390 - 0.1373 0.0291 0.1833 1.0 -0.71910.1193 0.0643 0.4479 0.1286 0.1579 0.0260 0.0169 0.0896 0.6522 0.0261 0.0102 0.2412 0.2688 0.0180 0.0960 0.1797 0.9280 0.6319 0.0039 - 0.2493 0.0454 - 0.1031 0.0001 0.2196 - 0.2190 0.2571 0.0626 0.1266 0.0694 0.2648 - 0.1715 - 0.0515 0.0917 0.2130 0.0469 0.0092 0.0332 0.0226 0.1296 - 0.0489 - 0.0137 0.0503 0.1409 0.0022 - 0.0279 - 0.3493 0.1110 - 0.0604 - 0.1265 - 0.1811 - 0.1330 - 0.0841 0.2866 0.0341 0.0849 0.0547 0.0093 0.0033 0.0462 0.1182 0.0413 0.1193 0.0728 0.0132 0.0209 - 0.0298 - 0.0006 0.0332 0.0695 - 0.0432 - 0.0159 0.0044 0.1841 - 0.0408 0.2635 0.0755 - 0.0573 0.1067 0.2003 - 0.0869 0.0169

	b _{ss}	A_{ss}	a_g	b_g	$\gamma_{1,g}$	$\alpha_s^{(n_f=3)}(\mu_0)$	$m_c(m_c)$	$m_b(m_b)$	$m_t(m_t)$
a_u	- 0.1186	- 0.1013	0.0046	0.2662	0.2008	0.1083	- 0.0006	0.0661	- 0.1339
b_u	- 0.0480	- 0.0411	- 0.0374	0.3141	0.2274	- 0.0607	0.0170	0.0554	- 0.2170
$\gamma_{1,u}$	- 0.1532	- 0.1458	0.1109	0.1579	0.0706	0.0848	- 0.0104	0.0605	- 0.0816
γ _{2,u}	0.1549	0.1802	- 0.1934	- 0.0050	0.0876	- 0.0250	0.0206	- 0.0367	0.0081
<i>γ</i> 3, <i>u</i>	- 0.1536	- 0.1625	0.1653	- 0.0207	- 0.0835	0.0765	- 0.0201	0.0287	0.0250
a_d	0.0486	0.1216	- 0.0288	0.0973	0.0919	0.0763	- 0.0123	- 0.0116	- 0.0616
b_d	0.1508	0.1678	- 0.0122	0.0870	0.0574	- 0.0306	- 0.0161	0.0029	- 0.0813
$\gamma_{1,d}$	0.0267	0.0924	0.0053	0.0646	0.0493	0.0725	- 0.0114	- 0.0074	- 0.0491
$\gamma_{2,d}$	- 0.1161	- 0.1196	0.0059	- 0.0666	- 0.0364	0.0243	0.0108	- 0.0051	0.0736
γ3,d	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
a_{us}	0.2197	0.3627	- 0.2570	- 0.1419	- 0.0241	0.0954	0.0704	- 0.0183	0.0641
b_{us}	0.0643	0.0261	0.0001	0.1266	0.0332	- 0.2866	- 0.0093	- 0.0132	- 0.1841
$\gamma_{-1,us}$	- 0.4479	- 0.6319	0.2197	0.0694	- 0.0226	- 0.0341	- 0.0034	0.0044	- 0.0408
$\gamma_{1,us}$	0.1286	0.0102	0.0039	0.2648	0.1296	- 0.3493	- 0.0462	0.0209	- 0.2635
A_{us}	0.1193	0.2412	- 0.2493	- 0.1715	- 0.0489	0.1110	0.1182	- 0.0298	0.0755
a_{ds}	- 0.1579	- 0.2688	- 0.2190	- 0.0515	- 0.0137	- 0.0604	0.0849	- 0.0006	- 0.0573
b_{bs}	- 0.0260	- 0.0180	- 0.0454	0.0917	0.0503	- 0.1265	0.0547	0.0332	- 0.1067
$\gamma_{1,ds}$	0.0169	- 0.0960	- 0.1031	0.2130	0.1409	- 0.1811	0.0413	0.0695	- 0.2003
A_{ds}	- 0.0896	- 0.1797	- 0.2571	- 0.0469	0.0022	- 0.1330	0.1193	- 0.0432	- 0.0869
ass	0.6522	0.9280	0.0626	- 0.0092	- 0.0279	- 0.0841	- 0.0728	- 0.0159	0.0169
b_{ss}	1.0	0.6427	- 0.0179	0.1967	0.1164	- 0.2390	- 0.0965	0.0169	- 0.1675
A_{ss}	0.6427	1.0	- 0.0211	0.1403	0.0997	- 0.1385	0.0216	0.0072	- 0.1109
a_g	- 0.0179	- 0.0211	1.0	- 0.5279	- 0.8046	0.1838	- 0.2829	0.0076	0.3310
b_g	0.1967	0.1403	- 0.5279	1.0	0.8837	- 0.5124	0.1438	0.1255	- 0.7275
$\gamma_{1,g}$	0.1164	0.0997	- 0.8046	0.8837	1.0	- 0.2511	0.1829	0.0814	- 0.5180
$\alpha_s^{(n_f=3)}(\mu_0)$	- 0.2390	- 0.1385	0.1838	- 0.5124	- 0.2511	1.0	- 0.1048	0.0423	0.6924
$m_c(m_c)$	- 0.0965	0.0216	- 0.2829	0.1438	0.1829	- 0.1048	1.0	0.0328	- 0.1577
$m_b(m_b)$	0.0169	0.0072	0.0076	0.1255	0.0814	0.0423	0.0328	1.0	- 0.0900
$m_t(m_t)$	- 0.1675	- 0.1109	0.3310	- 0.7275	- 0.5180	0.6924	- 0.1577	- 0.0900	1.0

Results for parton distributions

- PDFs with 1σ uncertainty bands; compare ABMP16, CT14, MMHT14 NNPDF3.0
- Gluon g(x)

Top-quark hadro-production cross section

• Cross section for $t\bar{t}$ -production with parametric dependence

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \underbrace{\hat{\sigma}_{ij\to X}\left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2\right)}_{\bullet}$$

- $= \hat{\sigma}_{ij \to X}^{(0)} + \alpha_s \, \hat{\sigma}_{ij \to X}^{(1)} + \, \alpha_s^2 \, \hat{\sigma}_{ij \to X}^{(2)} + \dots$
- PDFs f_i , strong coupling α_s , masses m_X
- Correlation of PDFs, $\alpha_s(M_Z)$ and m_t in global fit
 - effective parton $\langle x \rangle \sim 2m_t/\sqrt{s} \sim 2.5 \dots 5 \cdot 10^{-2}$

Top-quark mass determination

- Choice of renormalization scheme for treatment of heavy quarks
 - heavy quark mass in on-shell scheme $m_t^{
 m pole}$
 - running quark mass in $\overline{\mathrm{MS}}$ -scheme $m_t(\mu)$
- Intrinsic limitation of sensitivity in total cross section

$$\left|\frac{\Delta\sigma_{t\bar{t}}}{\sigma_{t\bar{t}}}\right| \simeq 5 \times \left|\frac{\Delta m_t}{m_t}\right|$$

Data on top-quark cross sections

experiment	decay channe	decay channel		luminosity	\sqrt{s} r	ef.		
ATLAS & CM	IS combined	combined		5 fb^{-1}	7 TeV 2	2205.13	830	
ATLAS & CM	IS combined	combined		$20 {\rm ~fb^{-1}}$	8 TeV 2	2205.13	830	
ATLAS dileptonic		ileptonic, semileptonic		257 pb^{-1}	5.02 TeV 2	2207.01	354	
CMS	dileptonic		2011	302 pb^{-1}	$5.02 { m TeV}$ 2	2112.09	114	
ATLAS	dileptonic		2015-2018	$140 {\rm ~fb^{-1}}$	13 TeV 2	303.15340		
ATLAS	semileptonic		2015 - 2018	$139 { m ~fb^{-1}}$	13 TeV 2	2006.13	076	
CMS	dileptonic		2016	$35.9 { m ~fb^{-1}}$	13 TeV 1	812.10	.0505	
CMS	semileptonic		2016-2018	$137 { m ~fb^{-1}}$	13 TeV 2	2108.02	803	
ATLAS	ATLAS dileptonic		2022	$11.3 \ {\rm fb}^{-1}$	13.6 TeV	TLAS-C	DNF-2023-006	
CMS	dileptonic, se	emileptonic	2022	$1.21 { m ~fb^{-1}}$	13.6 TeV 2	2303.10	680	
Experiment	decay channel	dataset	luminosit	y \sqrt{s}	observable(s	s) n	ref.	
CMS	semileptonic	2016-2018	$137 { m ~fb^{-1}}$	$13 { m TeV}$	$M(t\overline{t}), y(t\overline{t}) $) 34	2108.02803	
CMS	dileptonic	2016	$35.9 { m fb^{-1}}$	$13 { m TeV}$	$M(t\bar{t}), y(t\bar{t})\rangle$) 15	1904.05237	
ATLAS	semileptonic	2015 - 2016	$36~{\rm fb}^{-1}$	$13 { m TeV}$	$M(t\overline{t}), y(t\overline{t})\rangle$) 19	1908.07305	
ATLAS	all-hadronic	2015 - 2016	$36.1 { m ~fb^{-1}}$	$13 { m TeV}$	$M(t\overline{t}), y(t\overline{t}) $) 10	2006.09274	
CMS	dileptonic	2012	$19.7 { m ~fb^{-1}}$	$8 { m TeV}$	$M(t\overline{t}), y(t\overline{t}) $) 15	1703.01630	
ATLAS	semileptonic	2012	$20.3 { m ~fb^{-1}}$	$8 { m TeV}$	$M(tar{t})$	6	1511.04716	
ATLAS	dileptonic	2012	$20.2 { m ~fb^{-1}}$	$8 { m TeV}$	$M(tar{t})$	5	1607.07281	
ATLAS	dileptonic	2011	$4.6 {\rm ~fb^{-1}}$	$7 { m TeV}$	$M(t\overline{t})$	4	1607.07281	
ATLAS	semileptonic	2011	$4.6 {\rm ~fb^{-1}}$	$7 { m TeV}$	$M(t\overline{t})$	4	1407.0371	

- Measurements of top-quark hadro-production ATLAS, CMS
 - total inclusive $t\bar{t} + X$ cross sections
 - differential $t\bar{t} + X$ cross sections in $M(t\bar{t})$, $y(t\bar{t})$

(NDP = 10)(NDP = 112)

Fit quality

Data set	n	ABMP16	CT18	MSHT20	NNPDF4.0
CMS 13 TeV semileptonic 2108.02803	34	19(20)	29(176)	38(132)	55(90)
CMS 13 TeV dileptonic 1904.05237	15	15(15)	23(38)	27(34)	23(23)
ATLAS13 TeV semileptonic 1908.07305	19	11(15)	12(17)	11(13)	12(12)
ATLAS 13 TeV all-hadronic 2006.09274	10	11(11)	16(19)	16(17)	14(14)
CMS 8 TeV dileptonic 1703.01630	15	11(15)	11(12)	11(12)	12(12)
ATLAS 8 TeV semileptonic 1511.04716	6	10(12)	4(4)	4(4)	5(5)
ATLAS 7 TeV dileptonic 1607.07281	4	2(3)	1.9(1.9)	1.6(1.6)	1.1(1.1)
ATLAS 8 TeV dileptonic 1607.07281	5	0.2(0.2)	0.4(0.5)	0.4(0.4)	0.2(0.2)
ATLAS 7 TeV semileptonic 1407.0371	4	0.9(1.0)	5(6)	6(6)	3(3)
$\sigma(tar{t})$ all ATLAS + CMS incl. data	10	11(26)	16(61)	16(43)	11(12)
Total	122	101(117)	115(337)	113(262)	129(172)

- Global and partial χ^2 values for each data set
 - number of data points (n) obtained in m_t^{pole} extraction
 - different PDF sets ABMP16, CT18, MHST20, NNPDF4.0
- Additional χ^2 values in parentheses omit PDF uncertainties

Top-quark data in ABMP fit

ABMPtt PDF fit

Alekhin, Garzelli, S.M., Zenaiev '24

- New PDF fit with differential LHC top-quark data in ABMP framework
 - simultenous determination of proton PDFs, strong coupling, and heavy-quark masses at NNLO QCD
 - strong coupling $\alpha_s(M_Z) = 0.1150 \pm 0.0009$
 - top-quark $\overline{\text{MS}}$ mass $m_t(m) = 160.6 \pm 0.6 \text{ GeV}$
 - pole mass $m_t(m) = 170.2 \pm 0.7 \, \text{GeV}$

Upshot

- Good compatibility of PDFs from ABMP16tt and ABMP16
- Confirmation of gluon PDF in range $x \simeq 10^{-2}$ with reduced uncertainties compared to ABMP16
- PDFs sets available in LHAPDF for fixed number of flavors, n_f = 3, 4, 5 ABMPtt_3_nnlo (0+29) ABMPtt_4_nnlo (0+29) ABMPtt_5_nnlo (0+29)

ABMPtt PDFs (I)

• Ratio of PDFs (sea-quark, valence up- and down-quark) at scale Q = 100GeV for $n_f = 5$

• fit ABMP16tt VS. ABMP16

ABMPtt PDFs (II)

• Ratio of gluon PDF at scale Q = 100 GeV for $n_f = 5$

- fit ABMP16tt VS. ABMP16
- comparison to different PDF sets CT18, MHST20, NNPDF4.0

Summary (part IV)

Deep structure of proton

- Parton evolution
 - factorization induces evolution equations via renormalization group
 - parton distribution function from global fits to data
- Parton luminosity for hadron colliders
 - kinematics plane in x and Q^2 for present and future colliders
- Precision studies of hadron structure
 - dedicated analysis of experimental data
 - correlations of PDFs with $\alpha_s(M_Z)$ and top-quark mass extraction
- New ABMPtt PDF fit
 - Confirmation of gluon PDF in *x*-range relevant for Higgs production at LHC