Quantum Chromodynamics

lecture II

Sven-Olaf Moch

Universität Hamburg

IMSc Spring School on High Energy Physics

Sven-Olaf Moch

European Research Council Established by the European Commission

Chennai, Feb 25, 2025

Quantum Chromodynamics - p.1

Plan

- Introduction to QCD
 Monday, February 24, 2025
- QCD at work: infrared safety and jets Tuesday, February 25, 2025
- QCD at work: factorization and evolution *Wednesday, February 26, 2025*
- Deep structure of proton *Thursday, February 27, 2025*

Perturbative QCD at Work

- QCD the gauge theory of the strong interactions
- QCD covers dynamics in a large range of scales
 - asymptotically free theory of quarks and gluons at short distances
 - confining theory of hadrons at long distances
- Essential and established part of toolkit for discovering new physics
 - Tevatron and LHC
 - we no longer "test" QCD

Basic concepts of perturbative QCD

- Theoretical framework for QCD predictions at high energies relies on few basic concepts
 - infrared safety
 - factorization
 - evolution

Infrared safety

- Small class of cross sections at high energies and decay rates directly calculable in perturbation theory
- Infrared safe quantities
 - free of long range dependencies at leading power in large momentum scale Q Kinoshita '62; Lee, Nauenberg '64
- General structure of cross section
 - large momentum scale Q, renormalization scale μ

$$Q^{2} \hat{\sigma} \left(Q^{2}, \mu^{2}, \alpha_{s}(\mu^{2}) \right) = \sum_{n} \alpha_{s}^{n} c^{(n)} (Q^{2}/\mu^{2})$$

Examples

• total cross section in
$$e^+ e^-$$
-annihilation
 $R^{had}(s) = \frac{\sigma(e^+ e^- \rightarrow hadrons)}{\sigma(e^+ e^- \rightarrow \mu^+ \mu^-)}$

- jet cross sections in $e^+ e^-$ -annihilation
- total width of Z-boson

Soft and collinear singularities

- e^+e^- -annihilation (massless quarks)
 - Born cross section $\sigma^{(0)} = \frac{4\pi\alpha^2}{3s}$

Soft and collinear singularities

- e^+e^- -annihilation (massless quarks)
 - Born cross section $\sigma^{(0)} = \frac{4\pi\alpha^2}{3s}$

• Study QCD corrections (real emissions)

- Cross section
 - dimensional regularization $D = 4 2\epsilon$ (with $f(\epsilon) = 1 + O(\epsilon^2)$)

$$\sigma^{q\bar{q}g} = \sigma^{(0)} 3 \sum_{q} e_{q}^{2} f(\epsilon) C_{F} \frac{\alpha_{s}}{2\pi} \int dx_{1} dx_{2} \frac{x_{1}^{2} + x_{2}^{2} - \epsilon(2 - x_{1} - x_{2})}{(1 - x_{1})^{1 + \epsilon} (1 - x_{2})^{1 + \epsilon}}$$

• scaled energies
$$x_1 = 2 \frac{E_q}{\sqrt{s}}$$
 and $x_2 = 2 \frac{E_{\bar{q}}}{\sqrt{s}}$

- Soft and collinear divergencies $(0 \le x_1, x_2 \le 1 \text{ and } x_1 + x_2 \ge 1)$ p-k $1-x_1 = x_2 \frac{E_g}{\sqrt{s}}(1-\cos\theta_{2g}) \text{ and}$ $1-x_2 = x_1 \frac{E_g}{\sqrt{s}}(1-\cos\theta_{1g})$
 - Integrate over phase space for real emission contributions

$$\sigma^{q\bar{q}g} = \sigma^{(0)} 3 \sum_{q} e_q^2 f(\epsilon) C_F \frac{\alpha_s}{2\pi} \left(\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2} + \mathcal{O}(\epsilon)\right)$$

p

- Soft and collinear divergencies $(0 \le x_1, x_2 \le 1 \text{ and } x_1 + x_2 \ge 1)$ p-k $1-x_1 = x_2 \frac{E_g}{\sqrt{s}}(1-\cos\theta_{2g}) \text{ and}$ $1-x_2 = x_1 \frac{E_g}{\sqrt{s}}(1-\cos\theta_{1g})$
 - Integrate over phase space for real emission contributions

$$\sigma^{q\bar{q}g} = \sigma^{(0)} 3 \sum_{q} e_q^2 f(\epsilon) C_F \frac{\alpha_s}{2\pi} \left(\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2} + \mathcal{O}(\epsilon)\right)$$

Divergencies cancel against virtual contributions

Infrared safety (I)

Summing up

- Total cross section $\sigma^{(1)}$ at NLO
 - sum of real emission and virtual contributions

$$\sigma^{(1)} = \sigma^{(0)} 3 \sum_{q} e_q^2 f(\epsilon) C_F \frac{\alpha_s}{2\pi} \left(\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2} + \mathcal{O}(\epsilon) \right)$$
$$+ \sigma^{(0)} 3 \sum_{q} e_q^2 f(\epsilon) C_F \frac{\alpha_s}{2\pi} \left(-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \mathcal{O}(\epsilon) \right)$$
$$= \sigma^{(0)} 3 \sum_{q} e_q^2 f(\epsilon) C_F \frac{\alpha_s}{2\pi} \left(\frac{3}{2} + \mathcal{O}(\epsilon) \right)$$

Infrared safety

- Total cross section and R(s) are finite
 - directly calculable in perturbation theory

• use
$$f(\epsilon) \simeq 1 + \mathcal{O}(\epsilon)$$

$$R(s) = 3 \sum_{q} e_q^2 \left\{ 1 + \frac{\alpha_s}{\pi} + \mathcal{O}(\alpha_s^2) \right\}$$

Quantum Chromodynamics - p.7

Infrared safety (II)

Collinear singularities

• Collinear divergencies remain for hadronic observables \longrightarrow factorization

- Left: single-hadron inclusive e^+e^- -annihilation (time-like kinematics)
- Center: Drell-Yan process in *pp*-scattering (space-like kinematics)
- Right: Deep-inelastic e^-p -scattering (space-like kinematics)

Jets in QCD

Notion of a jet

 High energy event with collimated bunch of hadrons flying roughly in same direction is called a jet (hundreds of hadrons; contains a lot of information)

 Jets related to underlying QCD dynamics (quarks and gluons)

Jet algorithms

- Reduce complexity of final state (combine many hadrons to simpler objects)
- Connects parton picture to experimental signature (precise and quantitative)
- Mapping of particle 4-momenta $\{p_i\}$ to set of jets $\{j_k\}$

Properties of jet definitions

" Toward a standardization of jet definitions" FERMILAB-CONF-90-249-E

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in a theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order in perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

 $\left\{p_i\right\} \longrightarrow \left\{j_k\right\}$

Historical definitions

- Historically: Sterman-Weinberg criterium for two-jet event
 - small fraction $\beta/2$ of energy Q in cone of half angle δ

not practical for multi-particle events

- JADE algorithm: $\min (p_i + p_j)^2 = \min 2E_i E_j (1 \cos \theta_{ij}) > y_{cut}s$
 - disadvantage: combines also soft gluons at large relative k_t e.g. potential three-jet event

Di-jet phase space in e^+e^- annihilation

- phase space boundaries for region with two and three jets
 - Sterman-Weinberg with $(\beta, \delta) = (0.3, 30)$ (solid lines)
 - JADE algorithm with $y_{cut} = 0.1$ (dashed lines)

Upshot

- Cross section varies with jet definition
- Algorithms alter energy and momentum clustering and differences affect jet multiplicities observed

Jet rates in e^+e^- annihilation

Small angles θ_{qg}

• Differential expression in scaled energies $x_1 = 2\frac{E_q}{\sqrt{s}}$ and $x_2 = 2\frac{E_{\bar{q}}}{\sqrt{s}}$

$$\frac{d^2 \sigma^{e^+e^- \to 3\text{jets}}}{dx_1 dx_2} = \sigma^{(0)} \frac{\alpha_s}{2\pi} C_F \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$

• Transformation of variables to $x_3 = 2 \frac{E_g}{\sqrt{s}}$ and $\cos \theta_{qg}$

$$\frac{d^2 \sigma^{e^+ e^- \to 3\text{jets}}}{d \cos \theta_{qg} dx_3} = \sigma^{(0)} \frac{\alpha_s}{2\pi} C_F \left(\frac{2}{\sin^2 \theta_{qg}} \frac{1 + (1 - x_3)^2}{x_3} - x_3 \right)$$

small angle approximation

$$\frac{2d\cos\theta_{qg}}{\sin^2\theta_{qg}} \simeq \frac{d\theta_{qg}^2}{\theta_{qg}^2} + \frac{d\theta_{\bar{q}g}^2}{\theta_{\bar{q}g}^2}$$

• Splitting function $P_{qq}^{(0)}(z) = C_F \frac{1+z^2}{1-z}$ associated to each jet

$$d\sigma^{e^+e^- \to 3 \text{jets}} \simeq \sigma^{(0)} \sum_j \frac{\alpha_s}{2\pi} \frac{d\theta_{qg}^2}{\theta_{qg}^2} P_{qq}^{(0)} (1-z)$$

Sudakov form factor

• Splitting function $P_{qq}^{(0)}(z) = C_F \frac{1+z^2}{1-z}$ captures universal dynamics of collinear emissions

- Splitting function are process independent
- Independent evolution of two jets with splitting function
- Small energy fractions $z \rightarrow 1$ leads to Sudakov form factor

$$d\sigma^{e^+e^- \to 3 \text{jets}} \simeq \sigma^{(0)} \sum_{j} \frac{\alpha_s}{2\pi} \frac{d\theta_{qg}^2}{\theta_{qg}^2} \frac{dz}{z}$$

- Sudakov form factor at leading logarithmic accuracy
- suitable for parton shower Monte Carlos

Sterman-Weinberg jet cross section

• Phase space integration (up to energy fraction $\beta/2$) leads to di-jet cross section as function of β, δ

$$\frac{\sigma^{e^+e^- \to 2\text{jets}}}{\sigma^{(0)}} = 1 + \frac{\alpha_s}{2\pi} C_F \left(-8\ln\delta\ln\beta - 6\ln\delta + c_0\right)$$

- collinear divergence $\ln \delta$
- soft divergence $\ln \beta$

All-order resummation

- Soft and collinear divergences exponentiate
- Resummation to all orders in perturbation theory
- NNLO QCD correction to Sterman-Weinberg jet cross section

Becher, Neubert, Rothen, Shao '15

$$\frac{\sigma^{e^+e^- \to 2\text{jets}}}{\sigma^{(0)}} = 1 + \frac{\alpha_s}{2\pi} C_F \left(-8\ln\delta\ln\beta - 6\ln\delta + c_0\right) \\ + \left(\frac{\alpha_s}{2\pi}\right)^2 \left\{ C_F^2 \left(32\ln^2\delta\ln^2\beta + 48\ln\beta\ln^2\delta + \dots\right) \\ + C_F \beta_0 \left(4\ln\beta\ln^2\delta\right) + \dots \right\}$$

Modern jet definitions

- Two main classes of jet algorithms
- Sequential recombination algorithms (bottom-up approach)
 - combine particles starting from closest ones
 - choose distance measure
 - iterate recombination until few objects left, call them jets
 - e.g. k_t -clustering algorithm: $2\min(E_i^2, E_j^2)(1 \cos\theta_{ij}) > y_{cut}s$

Jets in hadronic collisions

- Metric of η, ϕ
 - define cone of radius *R* in η, ϕ for $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

Cone algorithm

- Top-down approach: find coarse regions of energy flow
 - find stable cones

 (i.e. their axis coincides with sum of momenta of particles in it)
 - e.g. JetClu, MidPoint, ATLAS cone, CMS cone, ...
- Problem
 - infrared unsafe beyond NLO in QCD
 - e.g. midpoint cone-algorithm: soft seed gives rise to extra hard jet (fixed for Tevatron run II)

Cone algorithms (II)

- Clustering of parton-level event from Herwig and random soft radiation with different jets algorithms
 - k_t algorithm
 - Cambridge/Aachen
 - SISCone
 - anti- k_t algorithm
- Illustration of "active" catchment areas of resulting hard jets

Cone algorithms (II)

(Some) uses of hadronic jets

- Hadronic di-jets: large statistics even with high- p_t cuts
 - experimental calibration (HCAL uniformity, establish missing E_t)
 - gluon jets constrain gluon PDF at medium/large x
 - searches for quark sub-structure (di-jet angular correlations)
- Hadronic di- and three-jets: α_s determination

Summary (part II)

Perturbative QCD at work

- Basics concepts of QCD
- Infrared safety
 - cancellation of soft and collinear singularities in inclusive observables
 - example $e^+e^- \rightarrow$ hadrons at NLO
- Resummation
 - large logarithms near threshold
 - radiative corrections (higher orders) important
 - essential to control theory uncertainties

Jets

- Jet algortihms
 - infrared saftey to all orders crucial
- Jets at the LHC
 - searches for new physics at high E_T
 - constrains on gluon PDF and $\alpha_s(M_Z)$