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Plan

– Introduction to QCD
Monday, February 24, 2025

– QCD at work: infrared safety and jets
Tuesday, February 25, 2025

– QCD at work: factorization and evolution
Wednesday, February 26, 2025

– Deep structure of proton
Thursday, February 27, 2025
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Perturbative QCD at Work

• QCD – the gauge theory of the strong interactions

• QCD covers dynamics in a large range of scales

• asymptotically free theory of quarks and gluons at short distances

• confining theory of hadrons at long distances

• Essential and established part of toolkit for discovering new physics

• Tevatron and LHC
• we no longer “test” QCD

Basic concepts of perturbative QCD
• Theoretical framework for QCD predictions at high energies relies on few

basic concepts

• infrared safety

• factorization
• evolution
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IR safety
Infrared safety

• Small class of cross sections at high energies and decay rates directly

calculable in perturbation theory

• Infrared safe quantities

• free of long range dependencies at leading power in large

momentum scale Q Kinoshita ‘62; Lee, Nauenberg ‘64

• General structure of cross section
• large momentum scale Q, renormalization scale µ

Q2 σ̂
(

Q2, µ2, αs(µ
2)
)

=
∑

n

αn
s c(n)(Q2/µ2)

• Examples

• total cross section in e+ e−-annihilation

Rhad(s) =
σ(e+ e− → hadrons)

σ(e+ e− → µ+ µ−)

• jet cross sections in e+ e−-annihilation

• total width of Z-boson
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Soft and collinear singularities
Soft and collinear singularities

• e+e−-annihilation (massless quarks)

• Born cross section σ(0) =
4πα2

3s

e−

e+ q̄

q
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Soft and collinear singularities
Soft and collinear singularities

• e+e−-annihilation (massless quarks)

• Born cross section σ(0) =
4πα2

3s

e−

e+ q̄

q

• Study QCD corrections (real emissions)

e
−

e
+ q̄

q e
−

e
+ q̄

q

g g

• Cross section
• dimensional regularization D = 4− 2ǫ (with f(ǫ) = 1 +O(ǫ2))

σqq̄g = σ(0) 3
∑

q

e2q f(ǫ)CF

αs

2π

∫

dx1dx2
x2
1 + x2

2 − ǫ(2− x1 − x2)

(1− x1)1+ǫ (1− x2)1+ǫ

• scaled energies x1 = 2
Eq√
s

and x2 = 2
Eq̄√
s
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NLO epem
• Soft and collinear divergencies (0 ≤ x1, x2 ≤ 1 and x1 + x2 ≥ 1)

1− x1 = x2
Eg√
s
(1− cos θ2g) and

1− x2 = x1
Eg√
s
(1− cos θ1g)

p

p − k

k

• Integrate over phase space for real emission contributions

σqq̄g = σ(0) 3
∑

q

e2q f(ǫ)CF

αs

2π

(

2

ǫ2
+

3

ǫ
+

19

2
+O(ǫ)

)
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NLO epem
• Soft and collinear divergencies (0 ≤ x1, x2 ≤ 1 and x1 + x2 ≥ 1)

1− x1 = x2
Eg√
s
(1− cos θ2g) and

1− x2 = x1
Eg√
s
(1− cos θ1g)

p

p − k

k

• Integrate over phase space for real emission contributions

σqq̄g = σ(0) 3
∑

q

e2q f(ǫ)CF

αs

2π

(

2

ǫ2
+

3

ǫ
+

19

2
+O(ǫ)

)

• Divergencies cancel against virtual contributions

e−

e+ q̄

q e−

e+ q̄

q

×2

σqq̄(g) = σ(0) 3
∑

q

e2q f(ǫ)CF

αs

2π

(

− 2

ǫ2
− 3

ǫ
− 8 +O(ǫ)

)
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Infrared safety (I)

Summing up

• Total cross section σ(1) at NLO
• sum of real emission and virtual contributions

σ(1) = σ(0) 3
∑

q

e2q f(ǫ)CF

αs

2π

(

2

ǫ2
+

3

ǫ
+

19

2
+O(ǫ)

)

+σ(0) 3
∑

q

e2q f(ǫ)CF

αs

2π

(

− 2

ǫ2
− 3

ǫ
− 8 +O(ǫ)

)

= σ(0) 3
∑

q

e2q f(ǫ)CF

αs

2π

(

3

2
+O(ǫ)

)

Infrared safety
• Total cross section and R(s) are finite

• directly calculable in perturbation theory

• use f(ǫ) ≃ 1 +O(ǫ)

R(s) = 3
∑

q

e2q

{

1 +
αs

π
+O(α2

s)
}
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Infrared safety (II)

Collinear singularities
• Collinear divergencies remain for hadronic observables

−→ factorization

e
−

e
+ q̄

q

g

q

q̄

g µ
−

µ
+

e
−

e
−

q

q

g

• Left: single-hadron inclusive e+e−-annihilation (time-like kinematics)

• Center: Drell-Yan process in pp-scattering (space-like kinematics)

• Right: Deep-inelastic e−p-scattering (space-like kinematics)
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Jets in QCD

Notion of a jet
• High energy event with collimated bunch of hadrons flying roughly in

same direction is called a jet

(hundreds of hadrons; contains a lot of information)

e
−

e
+ q̄

q e
−

e
+ q̄

q

g g

• Jets related to underlying QCD

dynamics (quarks and gluons)
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Jets in QCD (II)
Jet algorithms

• Reduce complexity of final state

(combine many hadrons to simpler objects)

• Connects parton picture to experimental signature

(precise and quantitative)

• Mapping of particle 4-momenta {pi} to set of jets {jk}
{

pi

}

−→
{

jk

}

Properties of jet definitions
“ Toward a standardization of jet definitions“ FERMILAB-CONF-90-249-E

1. Simple to implement in an experimental analysis;

2. Simple to implement in a theoretical calculation;

3. Defined at any order of perturbation theory;

4. Yields finite cross section at any order in perturbation theory;

5. Yields a cross section that is relatively insensitive to hadronization.
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Jets in QCD (III)
Historical definitions

• Historically: Sterman-Weinberg criterium for two-jet event

• small fraction β/2 of energy Q in cone of half angle δ

~n

α
δ = tan(α/2)

2Eout < βQ

• not practical for multi-particle events

• JADE algorithm: min (pi + pj)
2 = min 2EiEj (1− cos θij) > ycuts

• disadvantage: combines also soft gluons at large relative kt
e.g. potential three-jet event
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Jets in QCD (IV)
Di-jet phase space in e

+
e
− annihilation

• phase space boundaries for region

with two and three jets

• Sterman-Weinberg with

(β, δ) = (0.3, 30) (solid lines)

• JADE algorithm with

ycut = 0.1 (dashed lines)

Upshot
• Cross section varies with jet definition

• Algorithms alter energy and momentum clustering and differences affect

jet multiplicities observed
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Jets in QCD (V)
Jet rates in e

+
e
− annihilation

• Ratio of rates

fi =
σi−jet

σ
for two and three jets
• JADE algorithm with ycut ≤ 0.3

• Recall: three-jet cross section σe+e−→3jets

d2σe+e−→3jets

dx1dx2
= σ(0) 3

∑

q

e2q CF

αs

2π

x2
1 + x2

2

(1− x1) (1− x2)
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Jets in QCD (VI)
Small angles θqg

• Differential expression in scaled energies x1 = 2
Eq√
s

and x2 = 2
Eq̄√
s

d2σe+e−→3jets

dx1dx2
= σ(0) αs

2π
CF

x2
1 + x2

2

(1− x1) (1− x2)

• Transformation of variables to x3 = 2
Eg√
s

and cos θqg

d2σe+e−→3jets

d cos θqgdx3
= σ(0) αs

2π
CF

(

2

sin2 θqg

1 + (1− x3)
2

x3
− x3

)

• small angle approximation

2d cos θqg

sin2 θqg
≃ dθ2qg

θ2qg
+

dθ2q̄g
θ2q̄g

• Splitting function P (0)
qq (z) = CF

1 + z2

1− z
associated to each jet

dσe+e−→3jets ≃ σ(0)
∑

j

αs

2π

dθ2qg
θ2qg

P (0)
qq (1− z)
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Jets in QCD (VII)
Sudakov form factor

• Splitting function P (0)
qq (z) = CF

1 + z2

1− z
captures

universal dynamics of collinear emissions p

p − k

k

• Splitting function are process independent

• Independent evolution of two jets with splitting function

• Small energy fractions z → 1 leads to Sudakov form factor

dσe+e−→3jets ≃ σ(0)
∑

j

αs

2π

dθ2qg
θ2qg

dz

z

• Sudakov form factor at leading logarithmic accuracy

• suitable for parton shower Monte Carlos
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Jets in QCD (VIII)
Sterman-Weinberg jet cross section

• Phase space integration (up to energy fraction β/2) leads to di-jet cross

section as function of β, δ

σe+e−→2jets

σ(0)
= 1 +

αs

2π
CF (−8 ln δ ln β − 6 ln δ + c0)

• collinear divergence ln δ
• soft divergence lnβ

All-order resummation
• Soft and collinear divergences exponentiate

• Resummation to all orders in perturbation theory

• NNLO QCD correction to Sterman-Weinberg jet cross section
Becher, Neubert, Rothen, Shao ‘15

σe+e−→2jets

σ(0)
= 1 +

αs

2π
CF (−8 ln δ lnβ − 6 ln δ + c0)

+
(αs

2π

)2
{

C2
F

(

32 ln2 δ ln2 β + 48 lnβ ln2 δ + . . .
)

+CFβ0

(

4 lnβ ln2 δ
)

+ . . .

}
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Jet definitions
Modern jet definitions

• Two main classes of jet algorithms

• Sequential recombination algorithms (bottom-up approach)

• combine particles starting from closest ones
• choose distance measure
• iterate recombination until few objects left, call them jets

• e.g. kt-clustering algorithm: 2min (E2
i , E

2
j ) (1− cos θij) > ycuts

ycut ycut ycut

Jets in hadronic collisions
• Metric of η, φ

• define cone of radius R in η, φ for R =
√

(∆η)2 + (∆φ)2
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Cone algorithm (I)
Cone algorithm

• Top-down approach: find coarse regions of energy flow

• find stable cones
(i.e. their axis coincides with sum of momenta of particles in it)

• e.g. JetClu, MidPoint, ATLAS cone, CMS cone, ...

• Problem
• infrared unsafe beyond NLO in QCD
• e.g. midpoint cone-algorithm:

soft seed gives rise to extra hard jet (fixed for Tevatron run II)

p t/GeV p t/GeV

(a) (b)

0

y0 1 2 3−1

400

300

200

100

0

y0 1 2 3−1

400

300

200

100
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Cone algorithms (II)

• Clustering of parton-level event from Herwig and random soft radiation

with different jets algorithms

• kt algorithm

• Cambridge/Aachen

• SISCone
• anti-kt algorithm

• Illustration of “active” catchment areas of resulting hard jets
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Cone algorithms (II)
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Jets in hadronic collisions
(Some) uses of hadronic jets

• Hadronic di-jets: large statistics even with high-pt cuts

• experimental calibration (HCAL uniformity, establish missing Et)

• gluon jets constrain gluon PDF at medium/large x
• searches for quark sub-structure (di-jet angular correlations)

• Hadronic di- and three-jets: αs determination
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Summary (part II)

Perturbative QCD at work
• Basics concepts of QCD

• Infrared safety

• cancellation of soft and collinear singularities in inclusive observables

• example e+e− → hadrons at NLO

• Resummation
• large logarithms near threshold

• radiative corrections (higher orders) important
• essential to control theory uncertainties

Jets
• Jet algortihms

• infrared saftey to all orders crucial

• Jets at the LHC
• searches for new physics at high ET

• constrains on gluon PDF and αs(MZ)
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