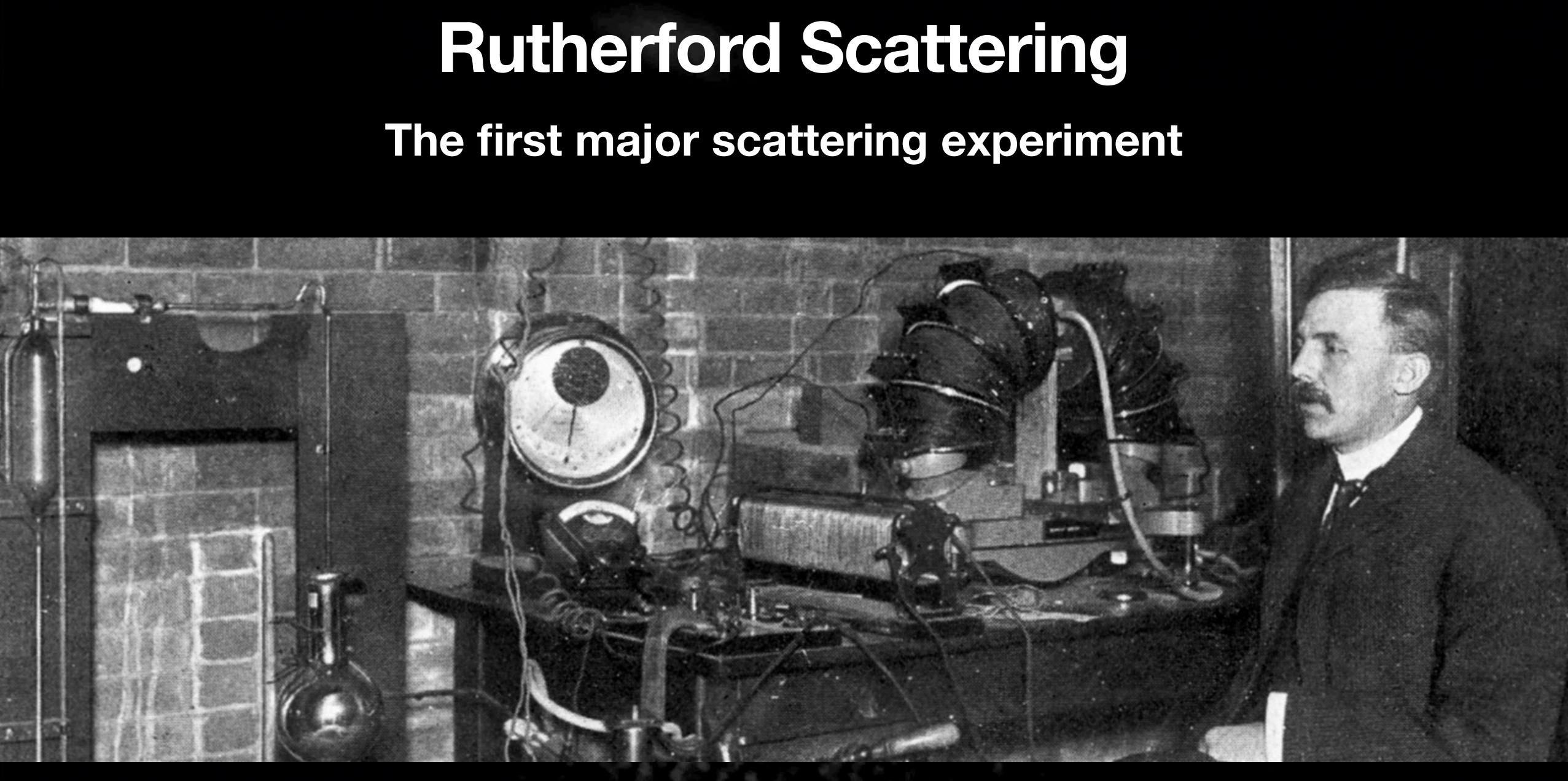
Patterns in scattering amplitudes

Anurag Tripathi IIT Hyderabad

Trends in Astroparticle and Particle Physics 28 Sep 2024

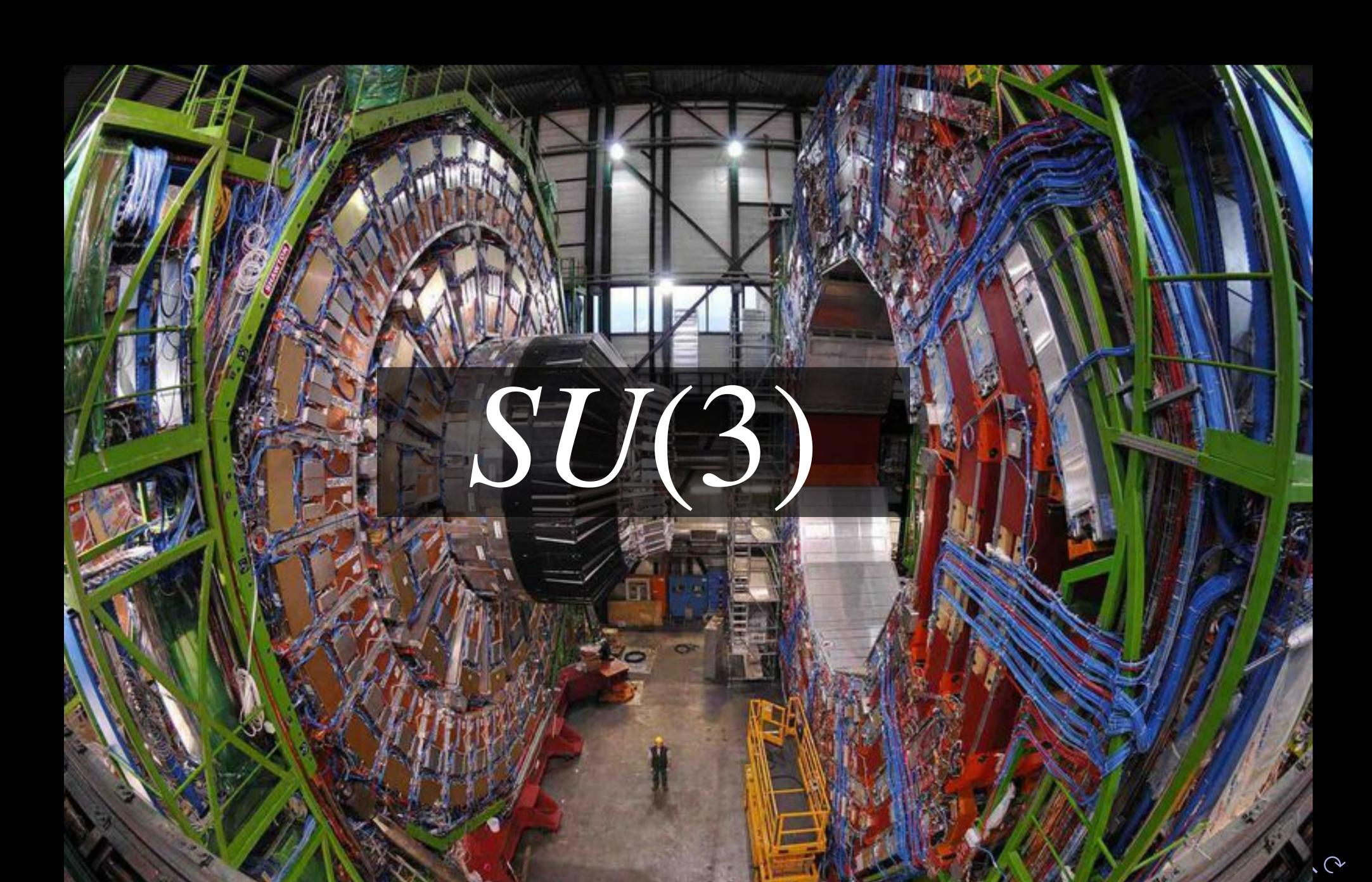
भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad



Many scatterings later...

$SU(3) \times SU(2) \times U(1)$

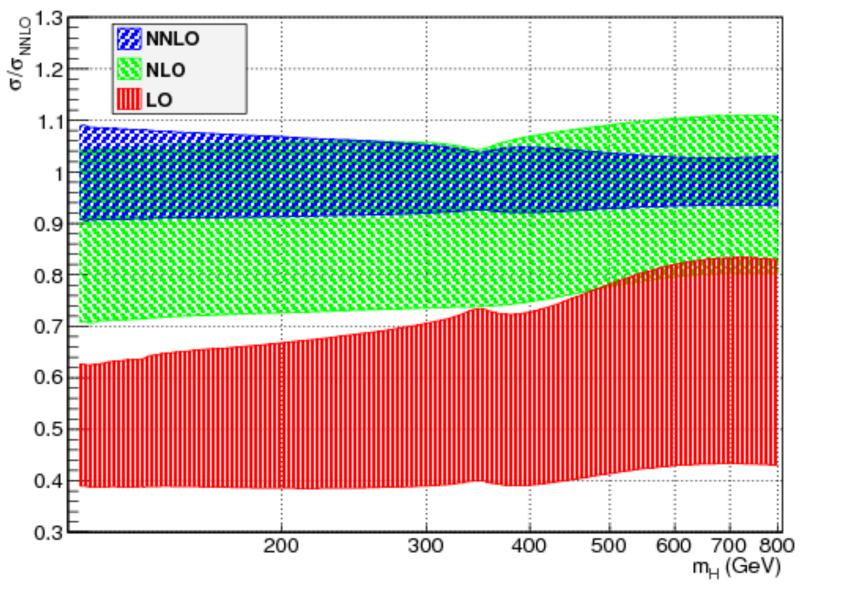
Standard Model of Particle Physics



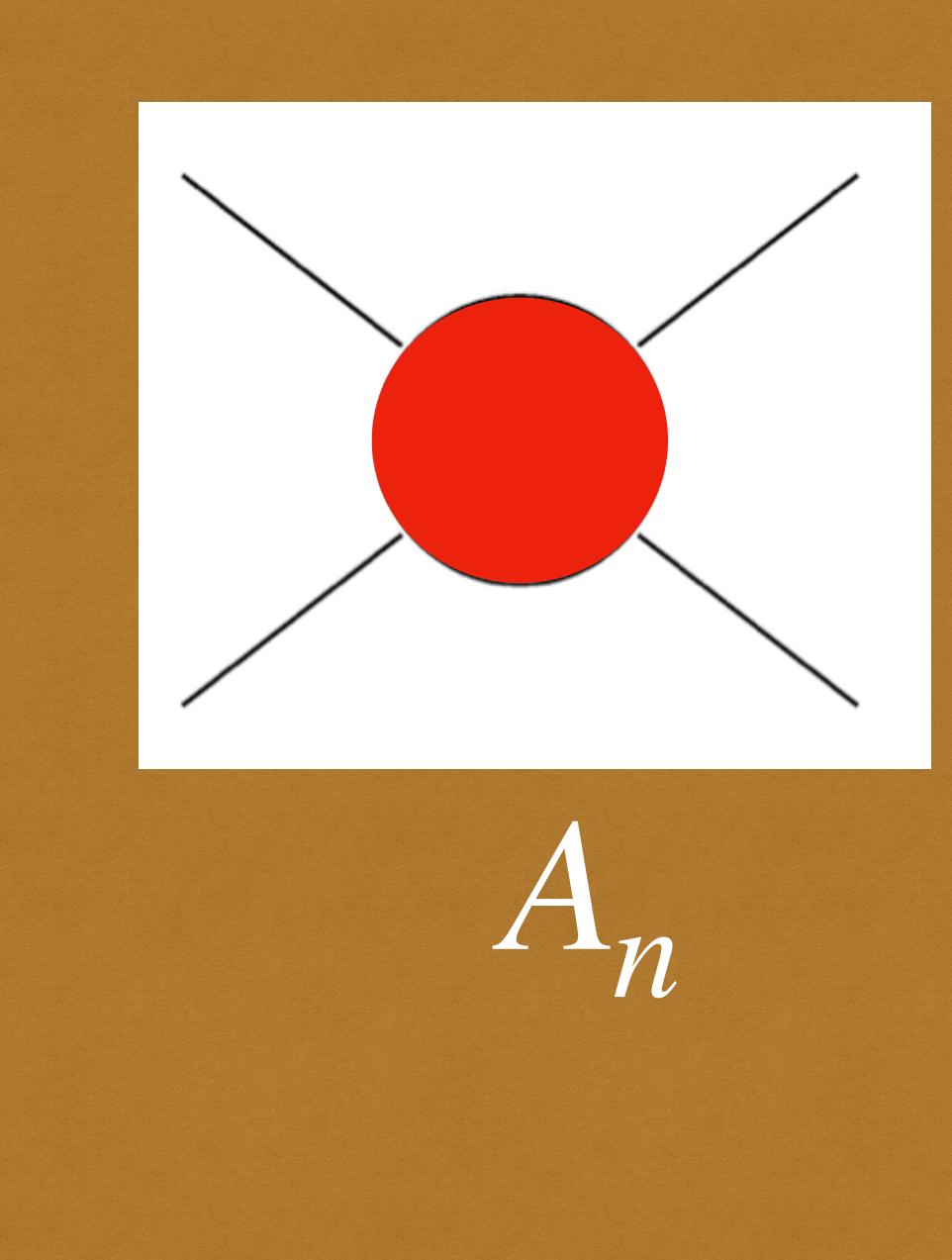
QCD SU(3) is indispensable

Gluon fusion cross-section at LO, NLO, and NNLO.

- NLO
- NNLO Group-1 Harlander, Kilgore ('02),
 - Group-2 Anastasiou, Melnikov, ('02),
 - Group-3 Ravindran, Smith, v.Neerven ('03)



Spira, Djouadi, Graudenz, Zerwas ('91, '93), Dawson ('91)



Scattering Amplitudes

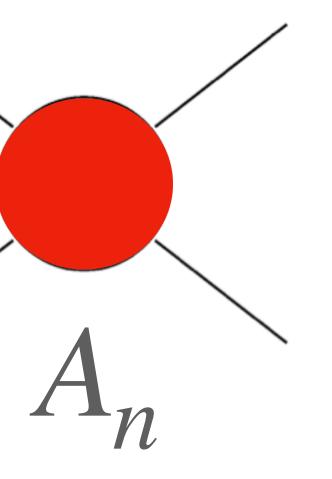
Fixed # of external particles only virtual corrections

Amplitudes in the Infrared (IR) limit

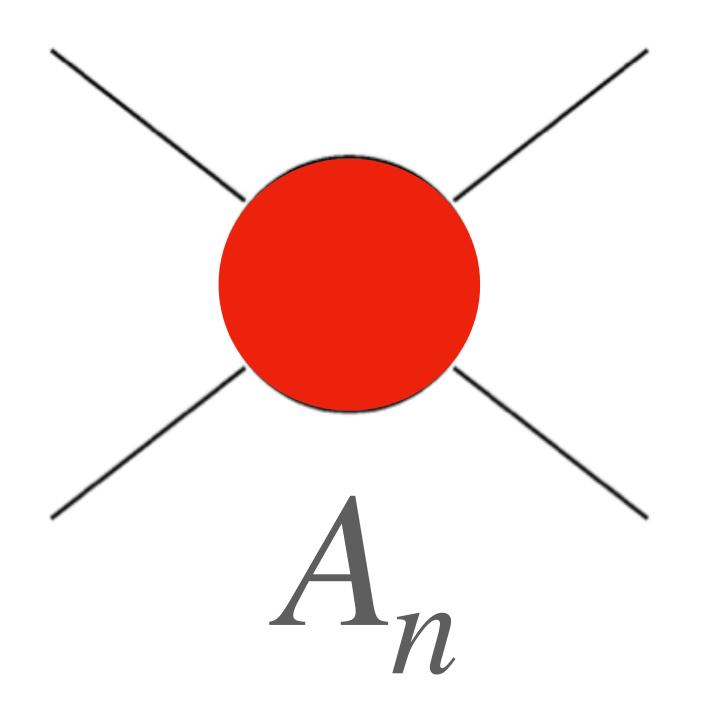
Integral over loop momenta

Soft gluon

propagator goes on-shell

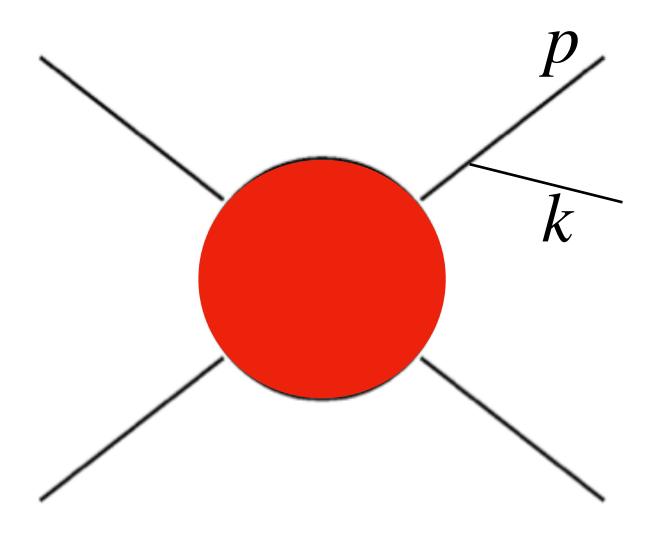


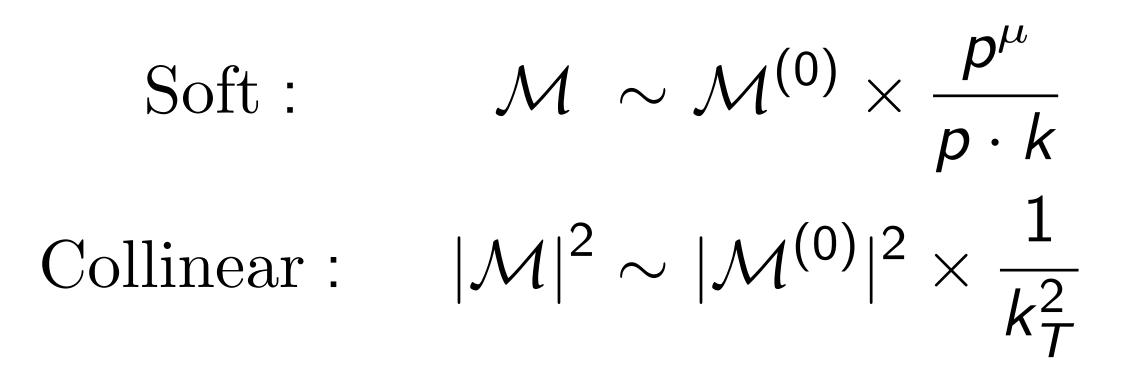
Why should we care about the IR limit ?



- large contributions
- Resumation
- Subtraction of poles

Large contributions

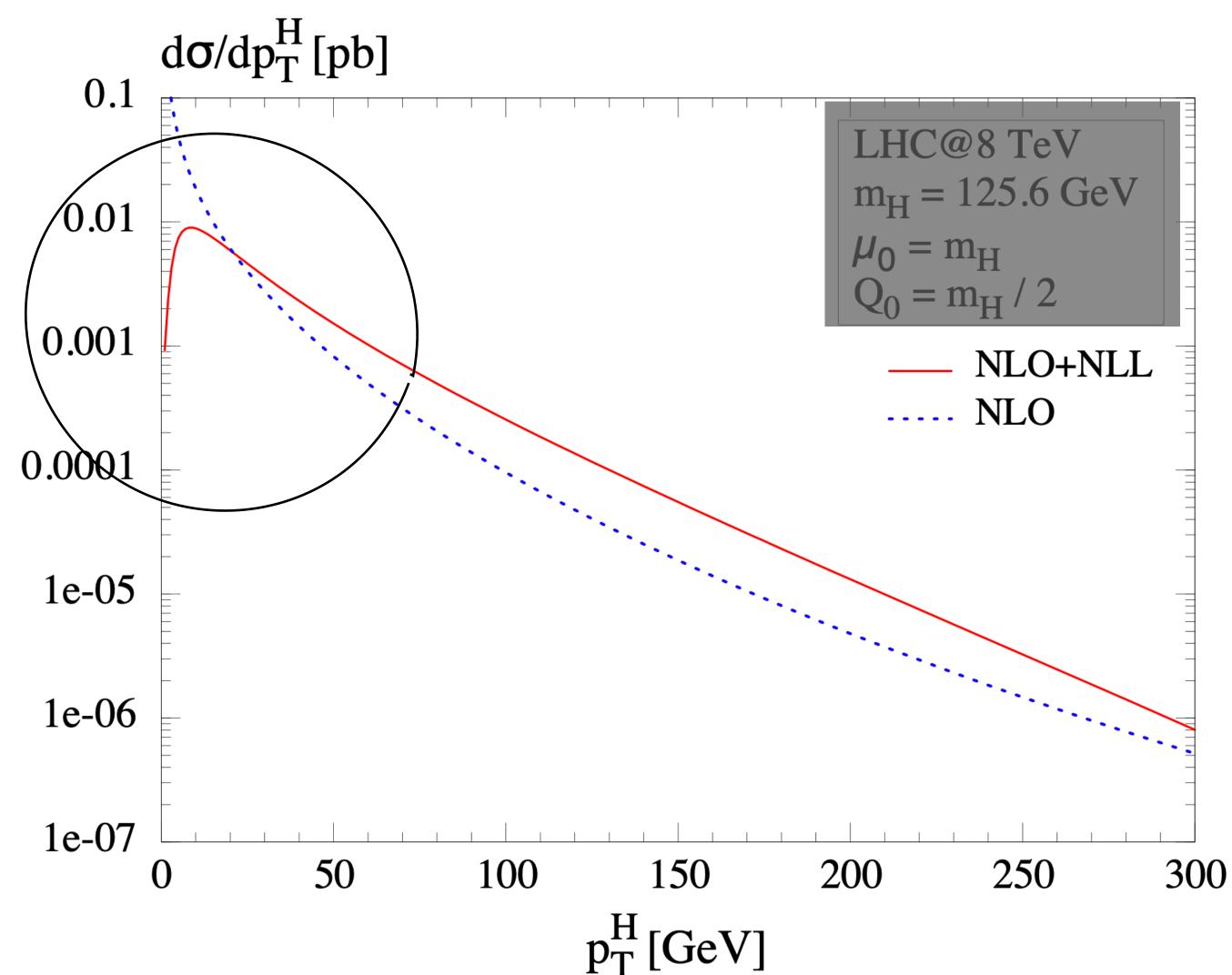




Singularities Factorize!

- $k \rightarrow$ gluon momentum
- $p \rightarrow$ the parton emitting the gluon

Large contributions \rightarrow Divergent distribution



Plan of the talk

- Scattering Amplitudes in IR limit 1.
- 2. Webs
- 3. Uniqueness Theorem and a new Formalism
- 4. Summary

Agarwal, Pal, Srivastav, AT; arxiv: 2307.15924

Agarwal, Pal, Srivastav, AT; arxiv: 2305.17452

Agarwal, Pal, Srivastav, AT; **JHEP 02 (2023) 258**

Agarwal, Pal, Srivastav, AT; **JHEP 06 (2022) 020**

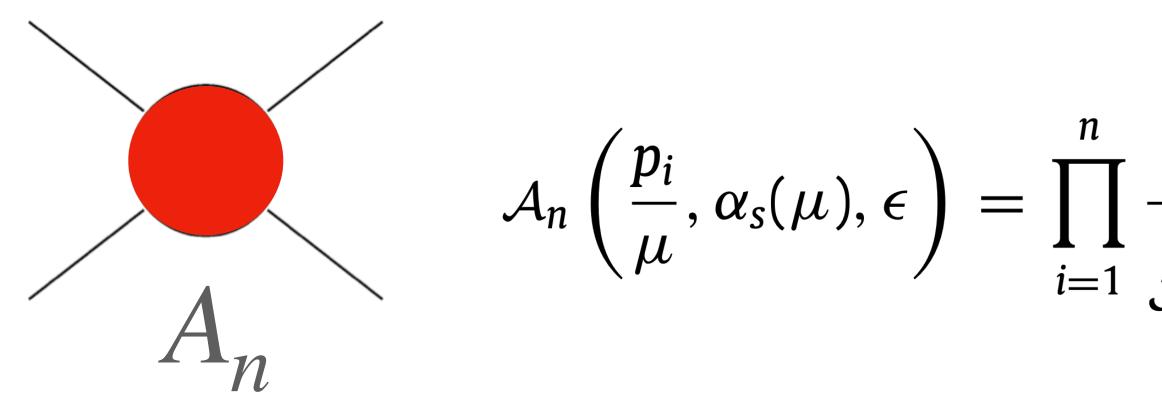
Agarwal, Magnea, Pal, AT; **JHEP 03 (2021) 188**

Agarwal, Danish, Magnea, Pal, AT; **JHEP 05 (2020) 128**

2018

Time

Fixed-angle multi-parton Scattering Amplitude In IR limit



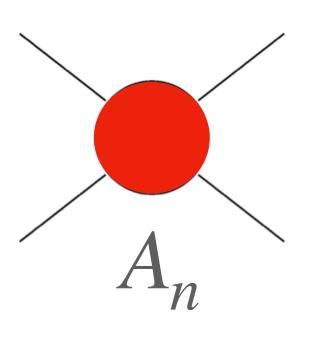
Soft function

$$= \prod_{i=1}^{n} \frac{\mathcal{J}_{i}\left(\frac{(p_{i}\cdot n_{i})^{2}}{n_{i}^{2}\mu^{2}}, \alpha_{s}(\mu^{2}), \epsilon\right)}{\mathcal{J}_{E,i}\left(\frac{(\beta_{i}\cdot n_{i})^{2}}{n_{i}^{2}}, \alpha_{s}(\mu^{2}), \epsilon\right)}$$

$$\times S_{n}\left(\beta_{i}\cdot\beta_{j}, \alpha_{s}(\mu^{2}), \epsilon\right) \mathcal{H}_{n}\left(\frac{p_{i}\cdot p_{j}}{\mu^{2}}, \frac{(p_{i}\cdot n_{i})^{2}}{n_{i}^{2}\mu^{2}}, \alpha_{s}(\mu^{2}), \epsilon\right)$$
Hard function

Multi-parton Scattering Amplitude In IR limit

IR behaviour



Soft matrix

 $S(\beta_i \cdot \beta_j, \alpha_s(\mu^2),$

Wilson line

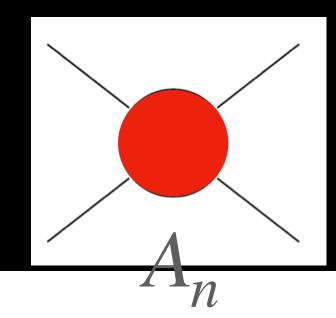
Soft anomalous dimension

 $\Phi_{\beta}\left(\infty,0\right)\equiv P\,\mathrm{ex}$

 $\mathcal{S}_n\Big(eta_i\cdoteta_j,lpha_s(\mu^2),$

 \leftrightarrow Wilson line correlator

$$\begin{split} \epsilon & \left(\epsilon \right) \equiv \langle 0 | T \left[\prod_{k=1}^{n} \Phi_{\beta_{k}}(\infty, 0) \right] | 0 \rangle \\ \exp \left[ig \int_{0}^{\infty} d\lambda \, \beta \cdot \mathbf{A}(\lambda \beta) \right] \\ \epsilon & \left(\epsilon \right) = \mathcal{P} \exp \left[-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d\lambda^{2}}{\lambda^{2}} \Gamma_{n} \left(\beta_{i} \cdot \beta_{j}, \alpha_{s}(\lambda^{2}), \epsilon \right) \right] \end{split}$$



1-loop Soft Anomalous dimension

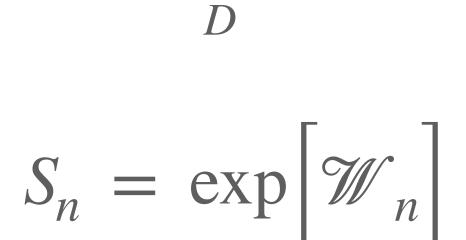
 $\gamma_{ij} = 2 \frac{p_i \cdot p_j}{\sqrt{p_i^2 p_j^2}}$ Minkowskian angles

 $\Gamma^{1} = -\Sigma \mathbf{T}_{i} \cdot \mathbf{T}_{i} \xi_{ii} \operatorname{coth}(\xi_{ij})$

 $\xi_{ij} = \cosh^{-1}\left(-\frac{\gamma_{ij}}{\gamma}\right)$

Diagrammatic Exponentiation (A complementary approach)

Kinematic factor K(D)Color factor C(D)



Modified colour factors $\widetilde{C}(D)$

For Eikonal Form factors these are called webs. Gatheral; Frenkel, Taylor; Sterman

 $S_n = \sum K(D) C(D)$

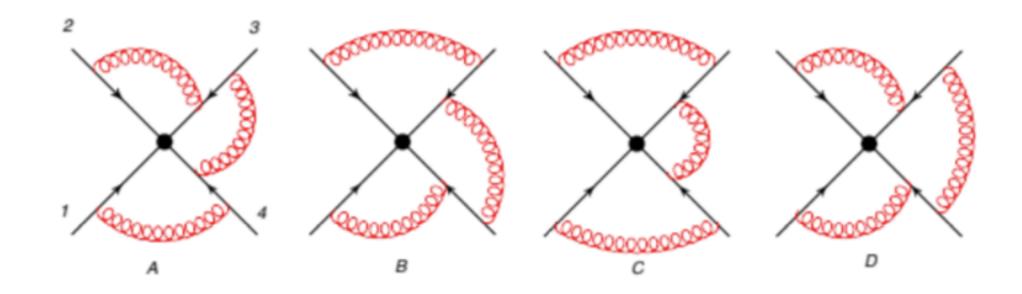
 $\mathscr{M} = \sum K(D) \ \widetilde{C}(D)$

Mitov, Sterman, Sung; 2010 Gardi, Laenen, Stavenga, White; 2010 Gardi, Smillie, White; 2011 Gardi, White; 2011 Dukes, Gardi, Steingrimsson, White; 2013 Gardi, Smillie, White; 2013 Dukes, Gardi, McAslan, Scott, White; 2016 See also: Vladimirov, 2014-2017 for

Alternative approach

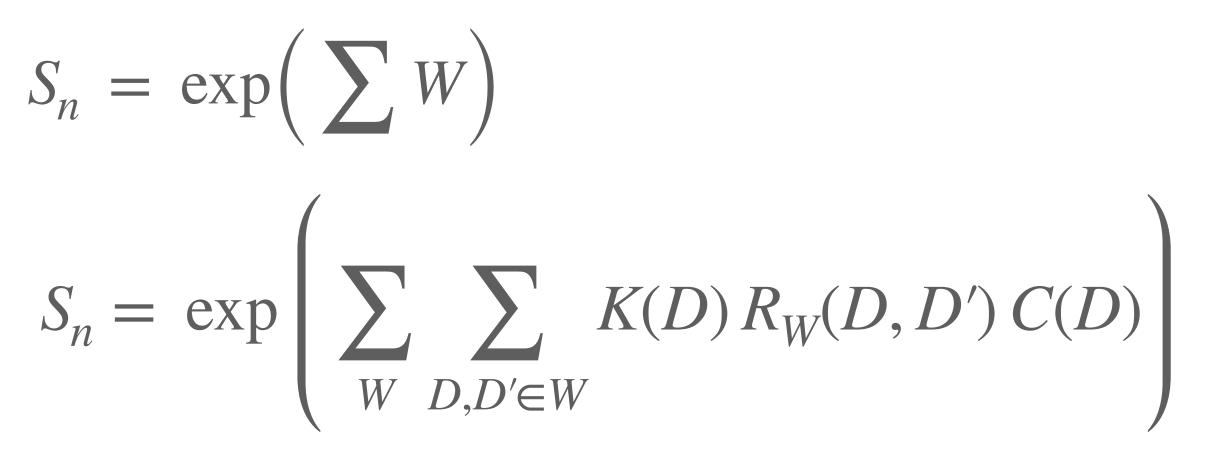
Multi-parton Webs

Web (W): A set of diagrams closed under permutations of the gluon attachments on the Wilson lines.



The exponent $W(\gamma_i)$ **grouped into webs**

 $R_w(D, D')$ Web mixing matrix (Gardi, Smillie, White, et al 2010-2013)



Properties of web mixing matrices

Projector

 $R^2 = R$

Row sum rule

Ensures the cancellation of leading divergences in webs

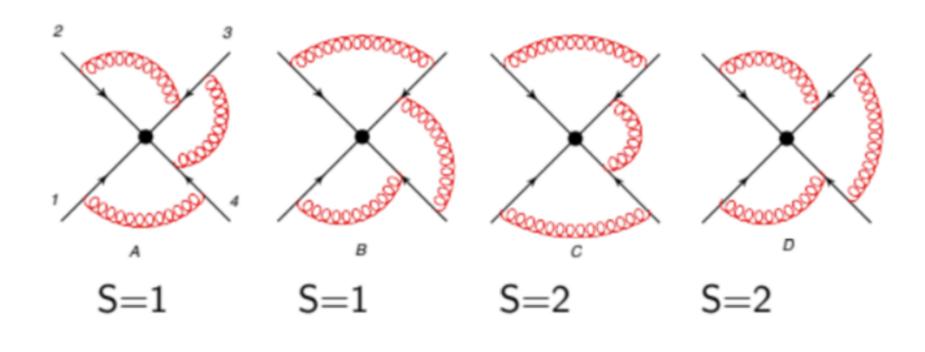
 $\sum_{D'} R(D, D') = 0$ D'

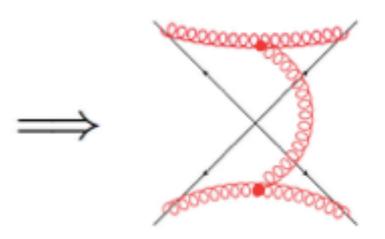
Column sum rule (Conjecture)

$$\sum_{D} s(D) R(D, D') = 0$$

Connection with Mathematical structures (Posets) (Dukes, Gardi, McAslan, Scott, White)

(Gardi, Smillie, White, et al 2010-2013)

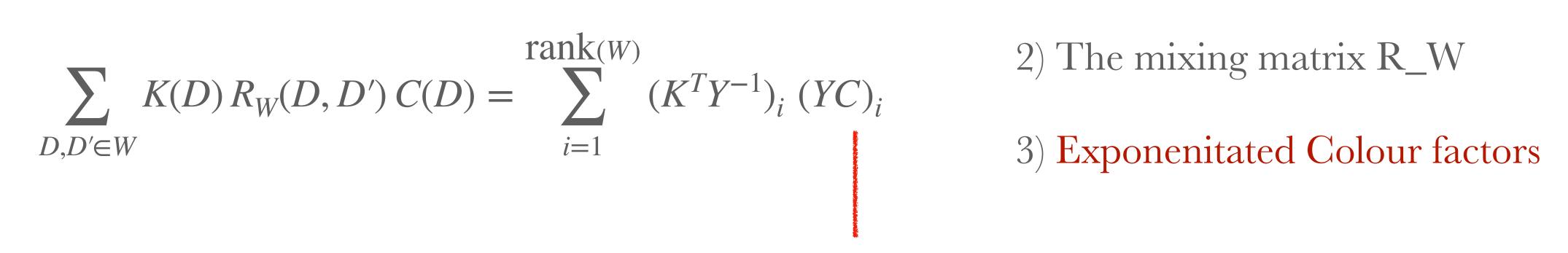




Exponentiated colour factor

Indirect handle on (difficult) Kinematics?

 $S_n = \exp\left(\sum_{W} \sum_{D,D' \in W} K(D) R_W(D,D') C(D)\right)$

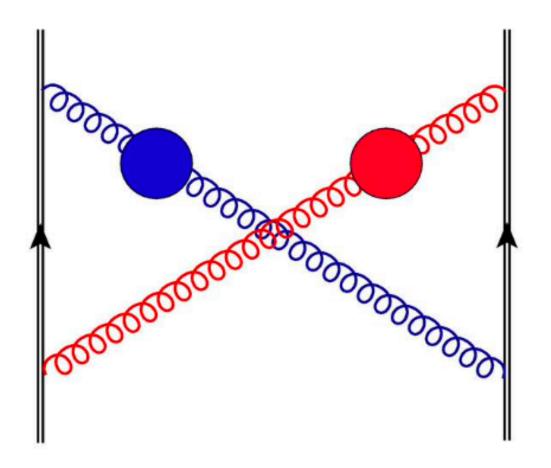


Objects of interest

1) Rank of the mixing matrix R_W

Exponentiat

 $YR_WY^{-1} = diag(1,...,1,0,...,0)$

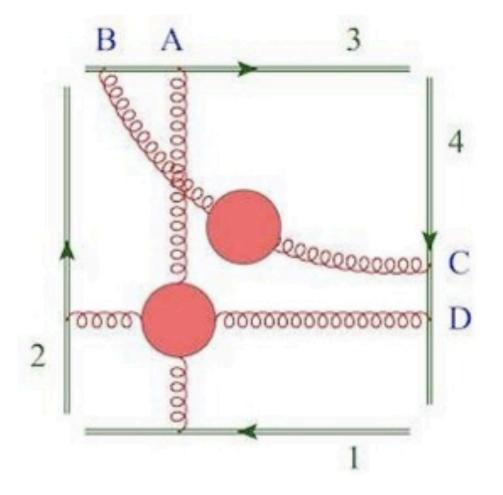


This makes drawing the diagrams easy.

```
Drawing the diagrams slightly differently
     (Apologies for inconvenience!)
```

The tails of the Wilson lines are not visually meeting at the origin.

 $\mathbf{W}_{4.\,\mathrm{I}}^{(1,0,1)}(1,1,2,2)$



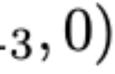
Diagrams	Sequences	S-factors	$\begin{pmatrix} 1 \\ - 1 \end{pmatrix} = \begin{pmatrix} -1 \\ - 1 \end{pmatrix}$
C_1	$\{\{BA\}, \{CD\}\}$	1	$R = \begin{pmatrix} 2 & 0 & 0 & 2 \\ -\frac{1}{2} & 1 & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2} \end{pmatrix} D = (1$
C_2	$\{\{BA\}, \{DC\}\}$	0	
C_3	$\{\{AB\}, \{CD\}\}$	0	
C_4	$\{\{AB\}, \{DC\}\}$	1	

Exponentiated **Color factors**

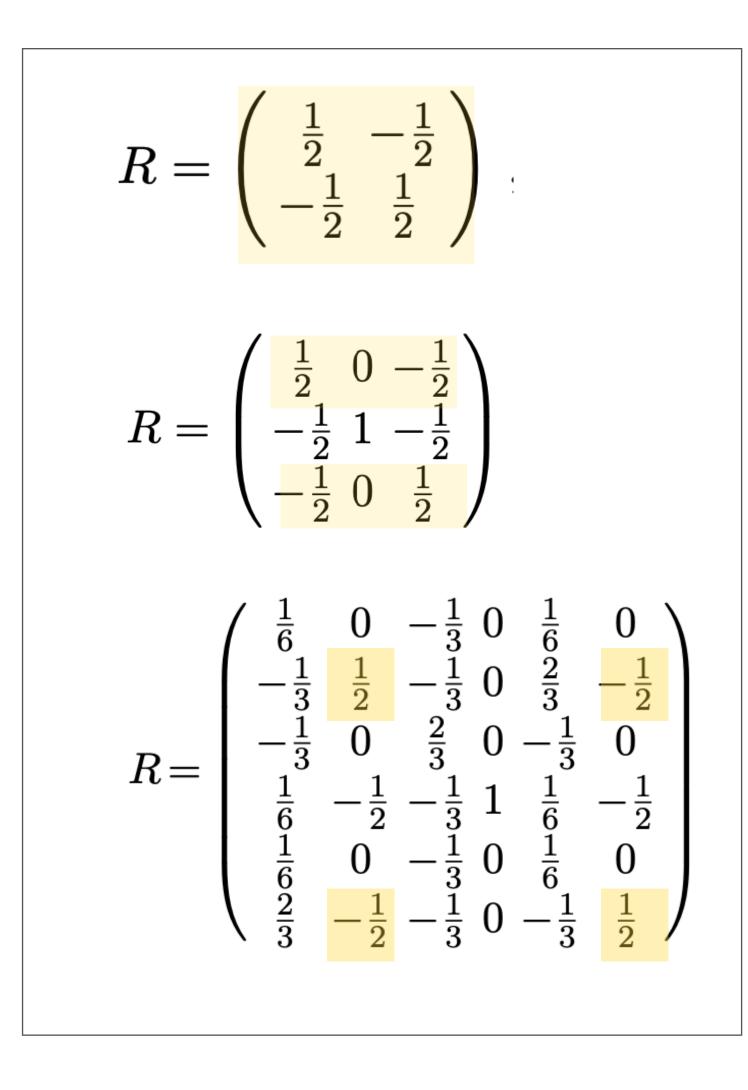
 $(YC)_1 = if^{abg} f^{cdg} f^{edh} \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^e \mathbf{T}_3^c \mathbf{T$ $(YC)_3 = if^{abg} f^{cdg} f^{edh} \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^e \mathbf{T}_3^c \mathbf{T}_4^h - f^{abg} f^{cdg} f^{cej} f^{edh} \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^j \mathbf{T}_4^h.$

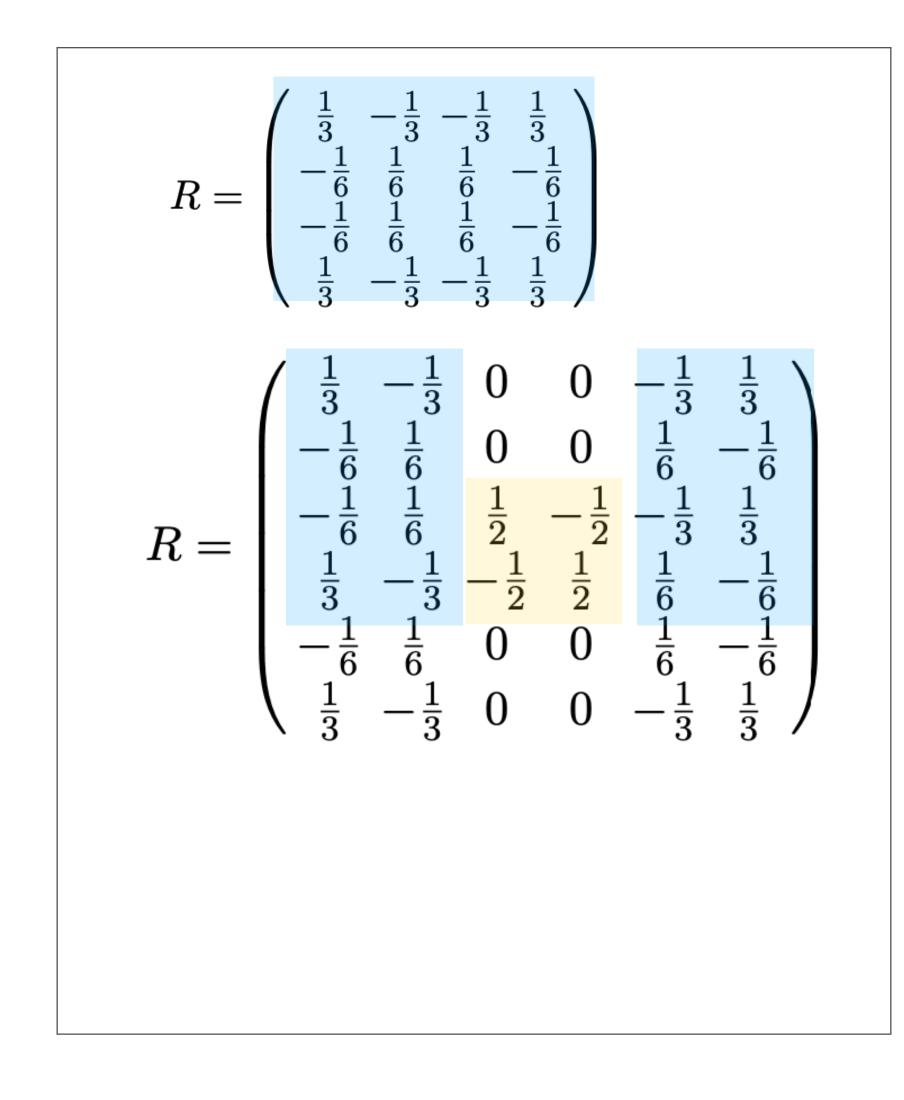
Agarwal, Danish, Magnea, Pal, AT; 2020

$$egin{aligned} & \mathbf{T}_3^c \mathbf{T}_4^h - i f^{abg} f^{cdg} f^{cej} \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^j \mathbf{T}_4^d \mathbf{T}_4^e \,, \ & \mathbf{T}_4^d \mathbf{T}_4^e \,, \ & \mathbf{T}_4^d \mathbf{T}_4^e \,, \ & \mathbf{T}_4^c \mathbf{T}_4^h - f^{abg} f^{cdg} f^{cej} f^{edh} \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_2^j \mathbf{T}_4^h \,. \end{aligned}$$



Is there a pattern?



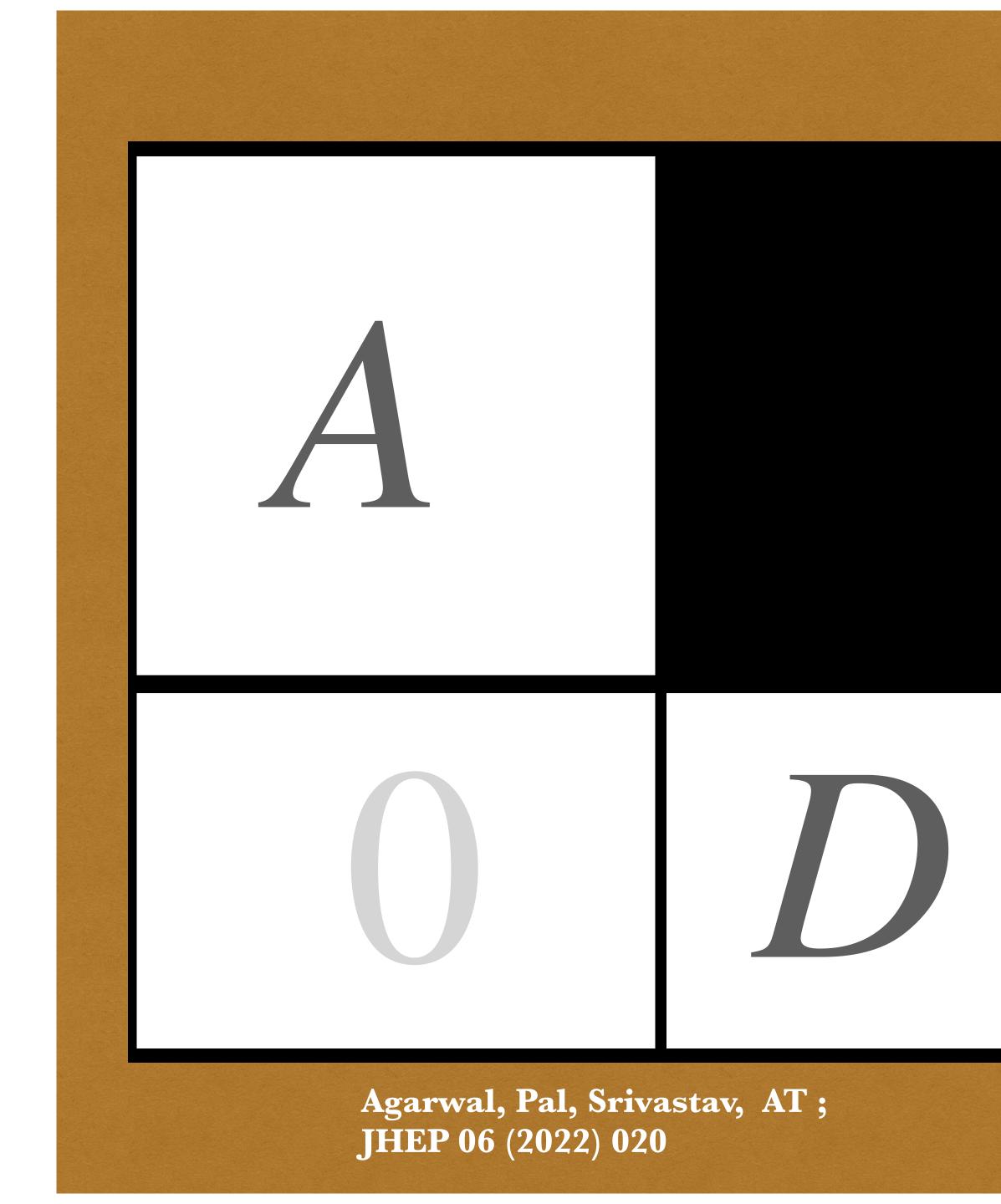


A sample of 4-loop Cweb mixing matrices

Agarwal, Magnea, Pal, AT; **JHEP 03 (2021) 188**

Agarwal, Danish, Magnea, Pal, AT; **JHEP 05 (2020) 128**

CwebGen 2.0



Uniqueness theorem

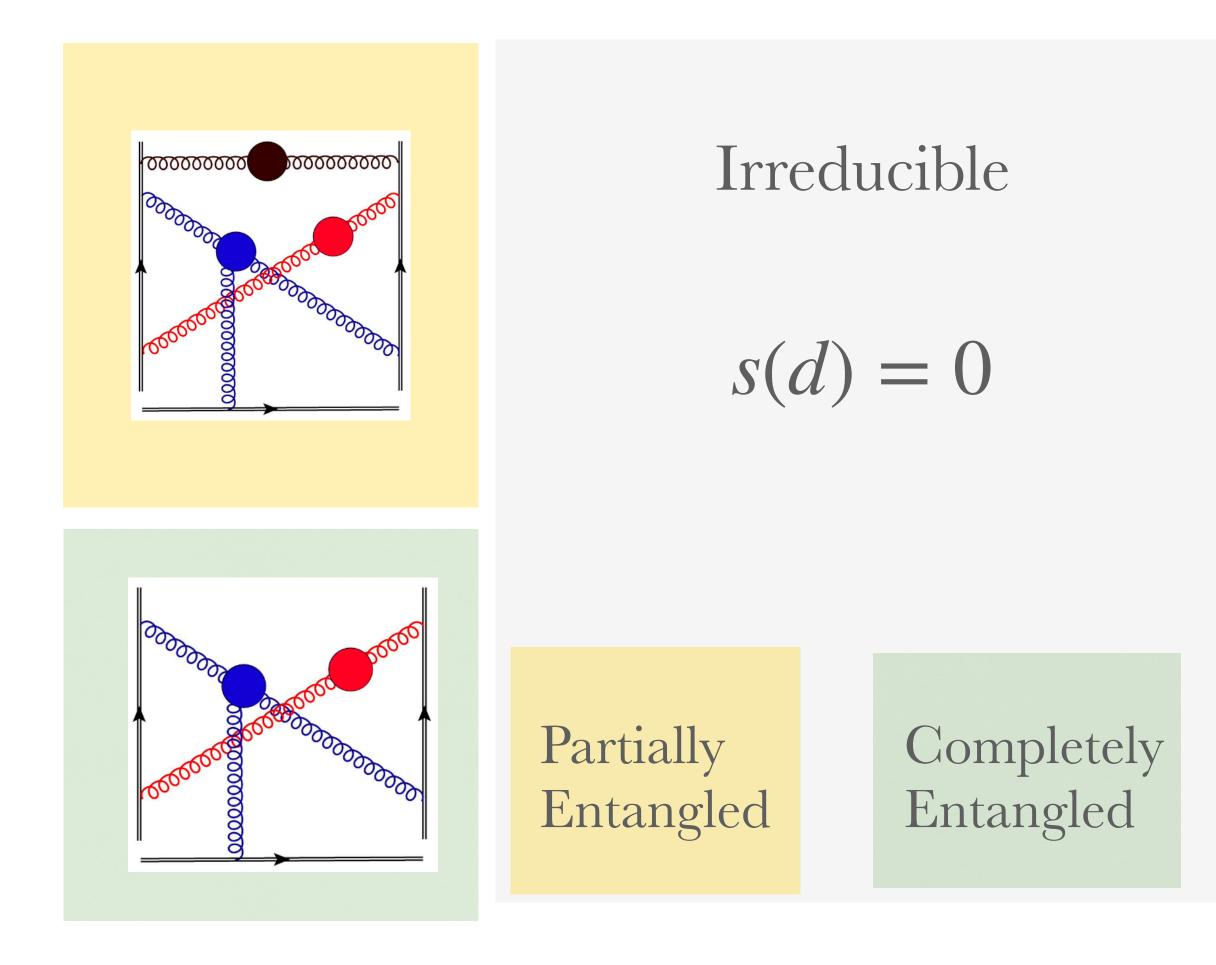
An organising idea

A web in a web!

Classification of diagrams

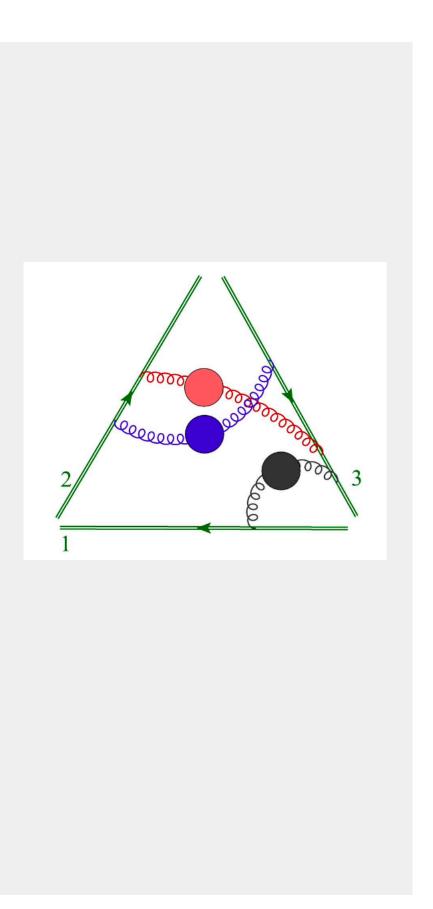
Irreducible s(d) = 0Partially Completely Entangled Entangled

Classification of diagrams



Reducible

$s(d) \neq 0$



A general web

Normal Ordering

Completely Entangled

Partially Entangled

$$R = \begin{pmatrix} I_{k \times k} & (A_U)_{k \times (l-k)} \\ O_{(l-k) \times k} & (A_L)_{(l-k) \times (l-k)} \\ \hline & O_{m \times l} & D_{m \times m} \end{pmatrix}$$

$$\frac{d_l}{d_{l+1}} = \frac{d_{l+1}}{d_{l+1}} = \frac{d_l}{d_{l+1}}$$

Reducible

Webs containing only reducible diagrams $(s(d_i) \neq 0, \forall i)$

Uniqueness Theorem:

For a given column weight vector

 $S = \{s(d_1), \dots, s(d_n)\}$

 $s(d_i) \neq 0, \forall i$

the mixing matrix is unique.

Agarwal, Pal, Srivastav, AT; **JHEP 06 (2022) 020**

Webs containing only reducible diagrams $(s(d_i) \neq 0, \forall i)$

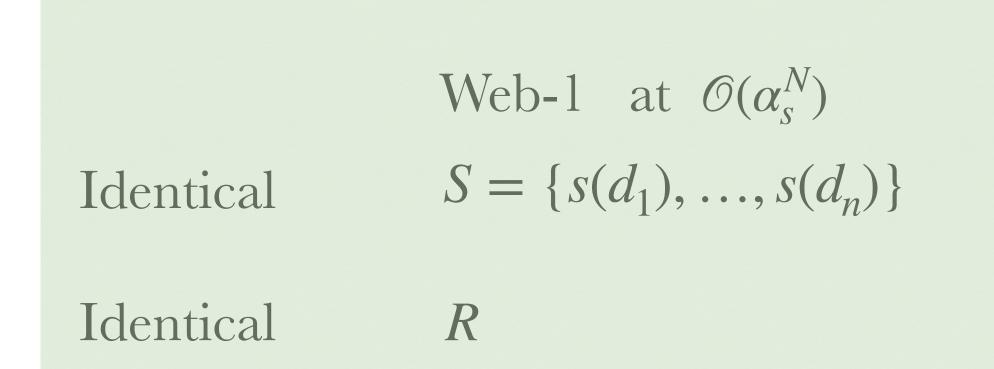
Uniqueness Theorem:

For a given column weight vector

 $S = \{s(d_1), \dots, s(d_n)\}$

 $s(d_i) \neq 0, \forall i$

the mixing matrix is unique.



Agarwal, Pal, Srivastav, AT; **JHEP 06 (2022) 020**

Web-2 at $\mathcal{O}(\alpha_s^M)$ $S = \{s(d_1), \dots, s(d_n)\}$

A and D diagonal blocks of mixing matrix R

$$R = \begin{pmatrix} I_{k \times k} & (A_U)_{k \times (l-k)} \\ O_{(l-k) \times k} & (A_L)_{(l-k) \times (l-k)} \\ 0_{m \times l} & D_{m \times m} \end{pmatrix}$$

The Block D satisfies the known properties of the mixing matrix!

 $D^2 = D$ Satisfy Row Sum Rule

Agarwal, Pal, Srivastav, AT; JHEP 06 (2022) 020

Satisfy Column Sum Rule

$$R = \begin{pmatrix} I_{k \times k} & (A_U)_{k \times (l-k)} \\ O_{(l-k) \times k} & (A_L)_{(l-k) \times (l-k)} \\ O_{m \times l} & D_{m \times m} \end{pmatrix}$$

The Block D satisfies the known properties of the mixing matrix!

 $D^2 = D$ Satisfy Row Sum Rule

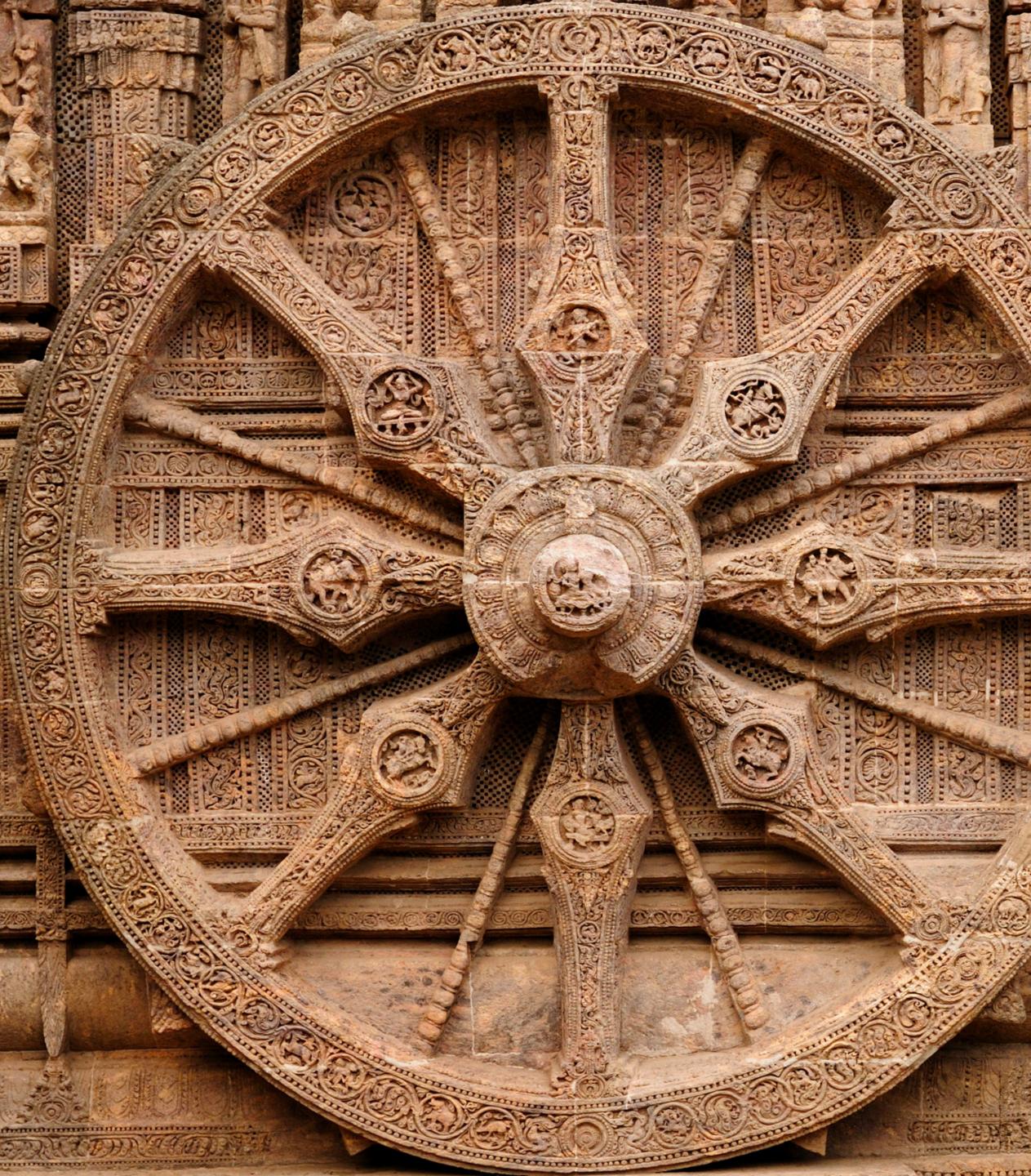
If $S = \{s_{l+1}, \dots, s_{l+m}\}$ With all entries non vanishing Using Uniqueness Theorem

D block is known if any web with same S has been calculated.

Block D

Agarwal, Pal, Srivastav, AT; **JHEP 06 (2022) 020**

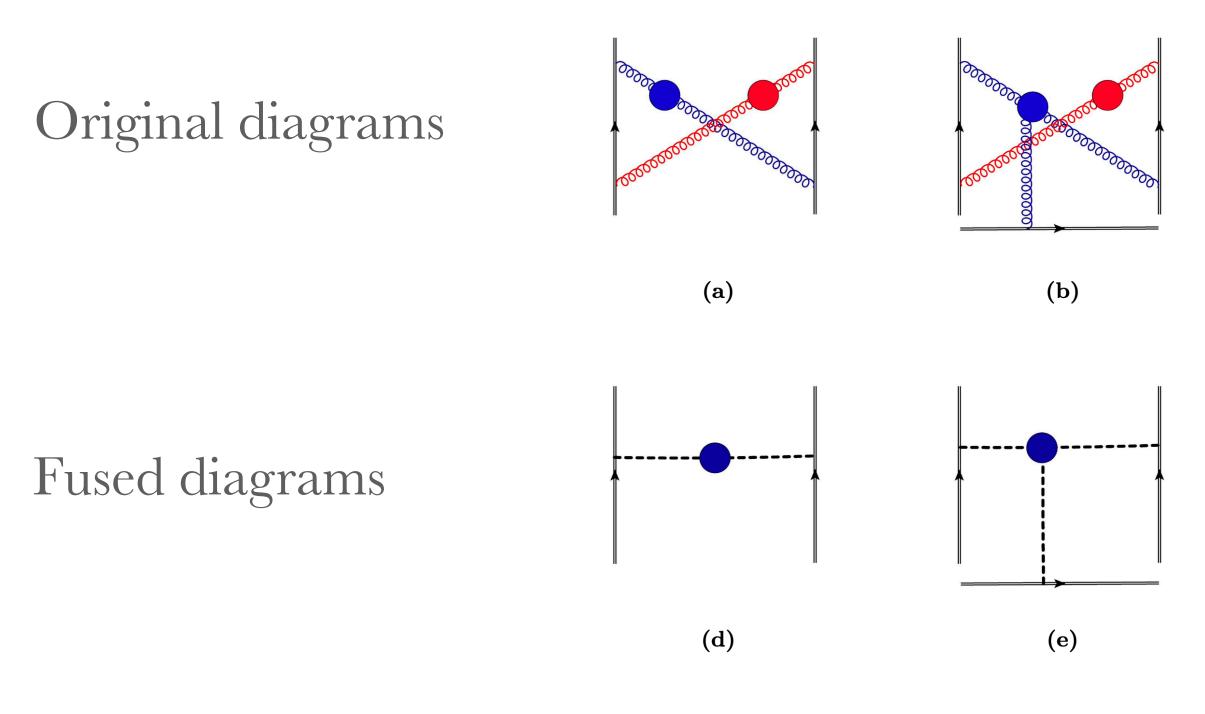
Satisfy Column Sum Rule



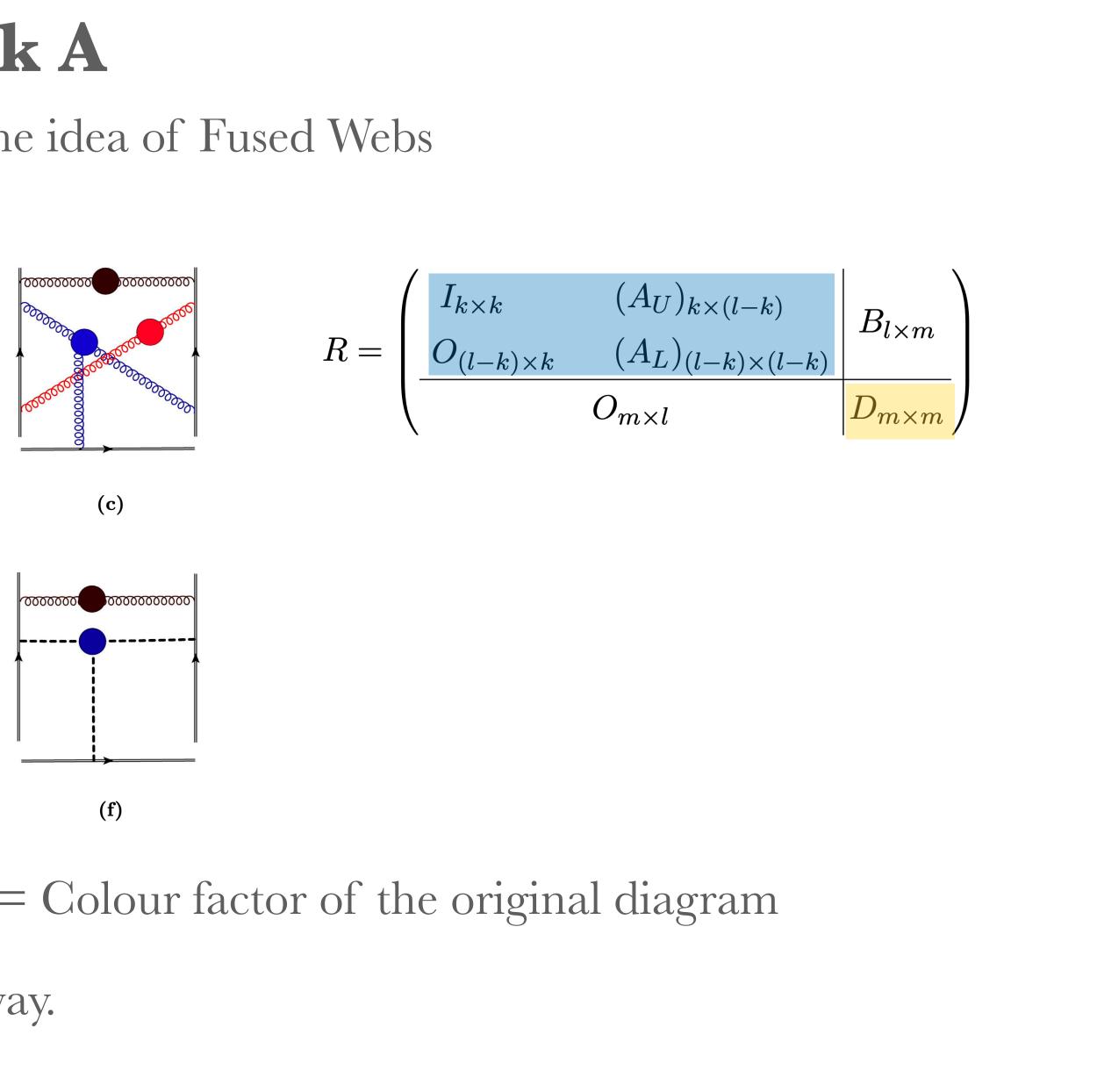
Fused web Formalism

Agarwal, Pal, Srivastav, AT; JHEP 06 (2022) 020

Block A Coarse graining : The idea of Fused Webs



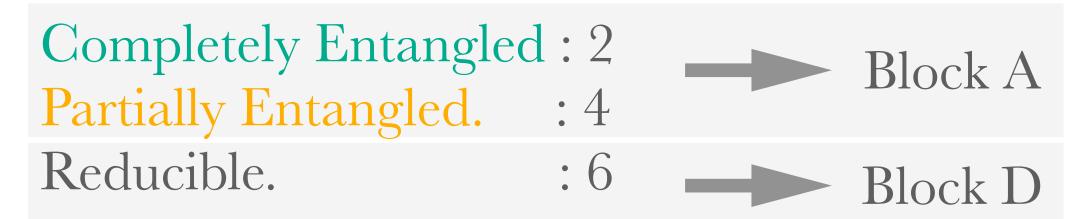
Colour factor of a Fused diagram = Colour factor of the original diagram s-factors are defined in the usual way.



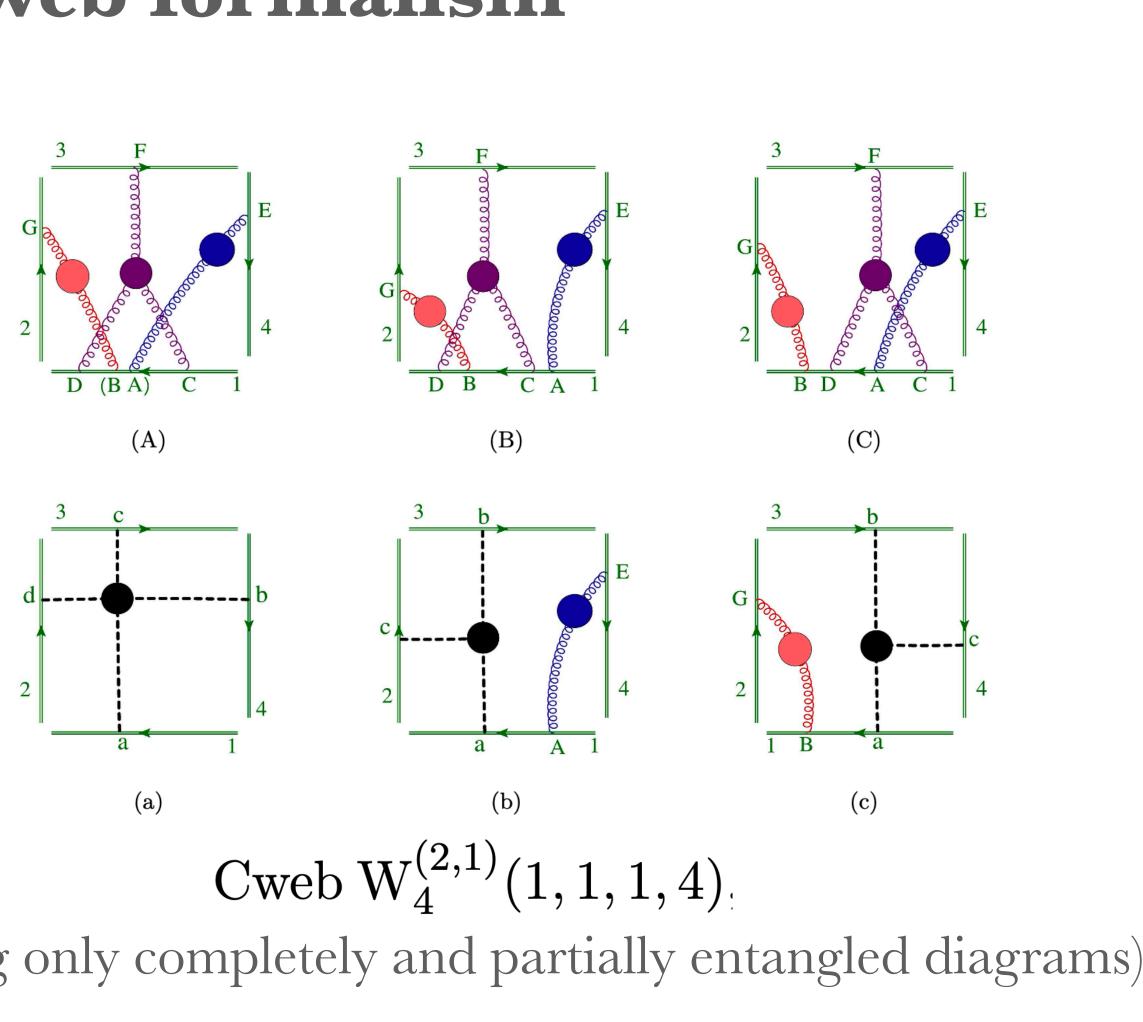
Application of fused web formalism

A sample web

12 diagrams



$$R = \begin{pmatrix} I_2 & A_U \\ O_{4 \times 2} & R(1_2) & X \\ O_{2 \times 2} & R(1_2) \\ 0_{6 \times 6} & D \end{pmatrix}$$



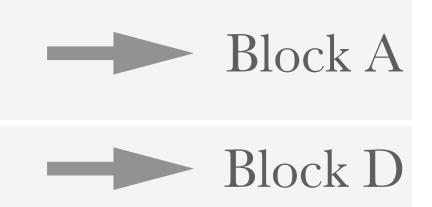
(Showing only completely and partially entangled diagrams)

Application of fused web formalism

Cweb
$$W_4^{(2,1)}(1,1,1,4)$$
:

12 diagrams

Completely Entangled: 2 Partially Entangled:4 Reducible: 6



$$R = \begin{pmatrix} I_2 & A_U \\ 0_{4 \times 2} & R(1_2) & X \\ 0_{2 \times 2} & R(1_2) \\ 0_{6 \times 6} & D \end{pmatrix}$$

Agarwal, Pal, Srivastav, AT; JHEP 06 (2022) 020

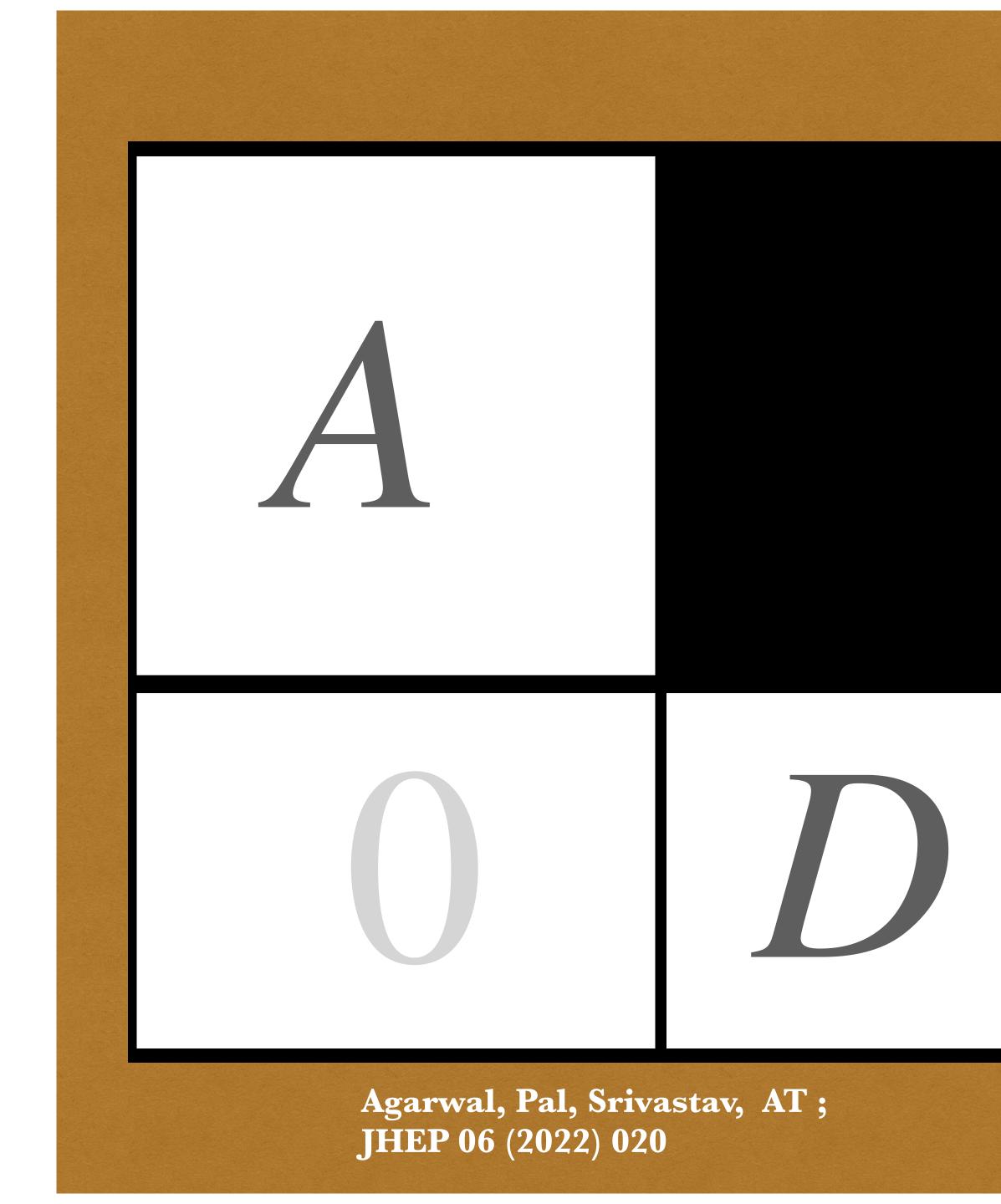
5

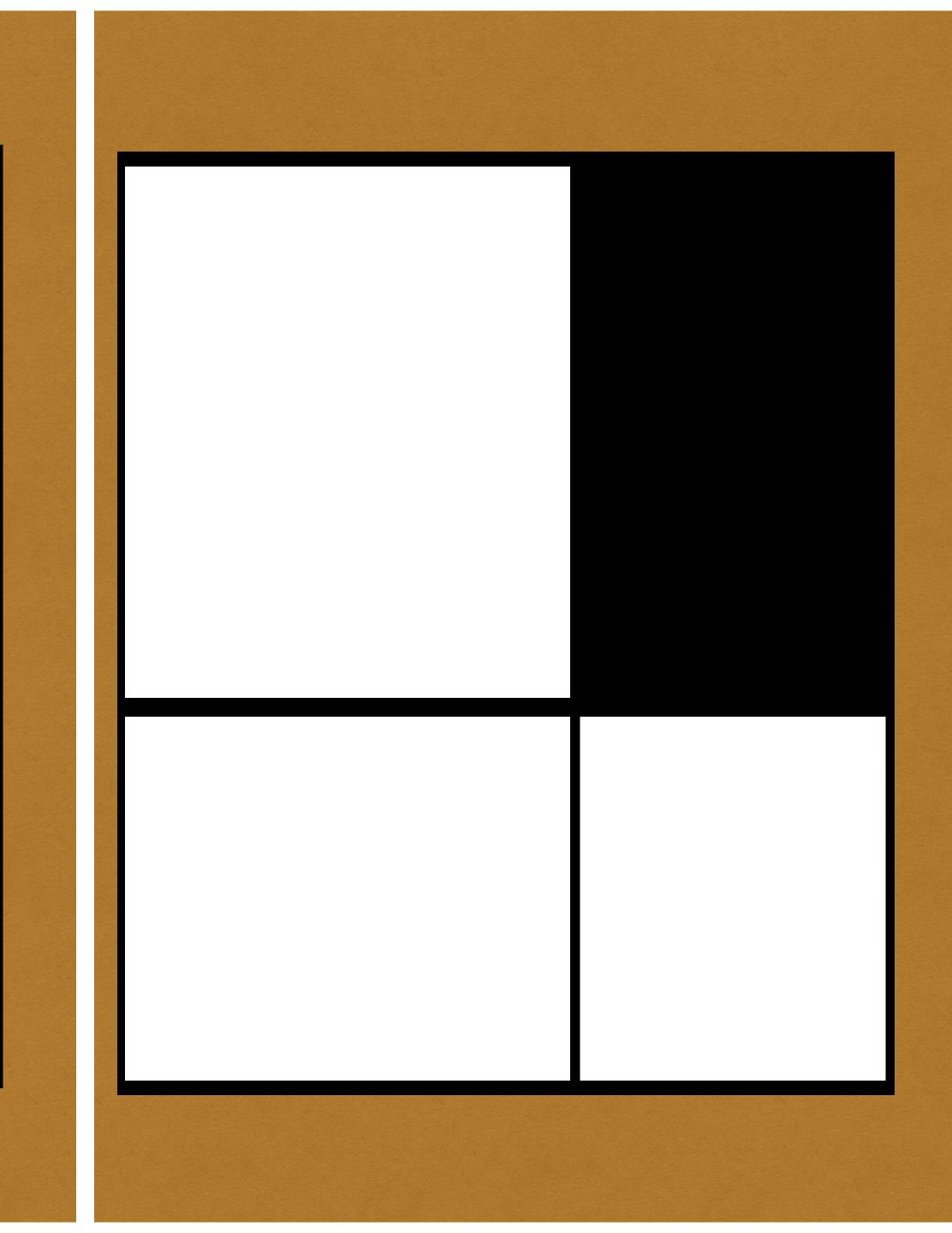
Application of fused web formalism

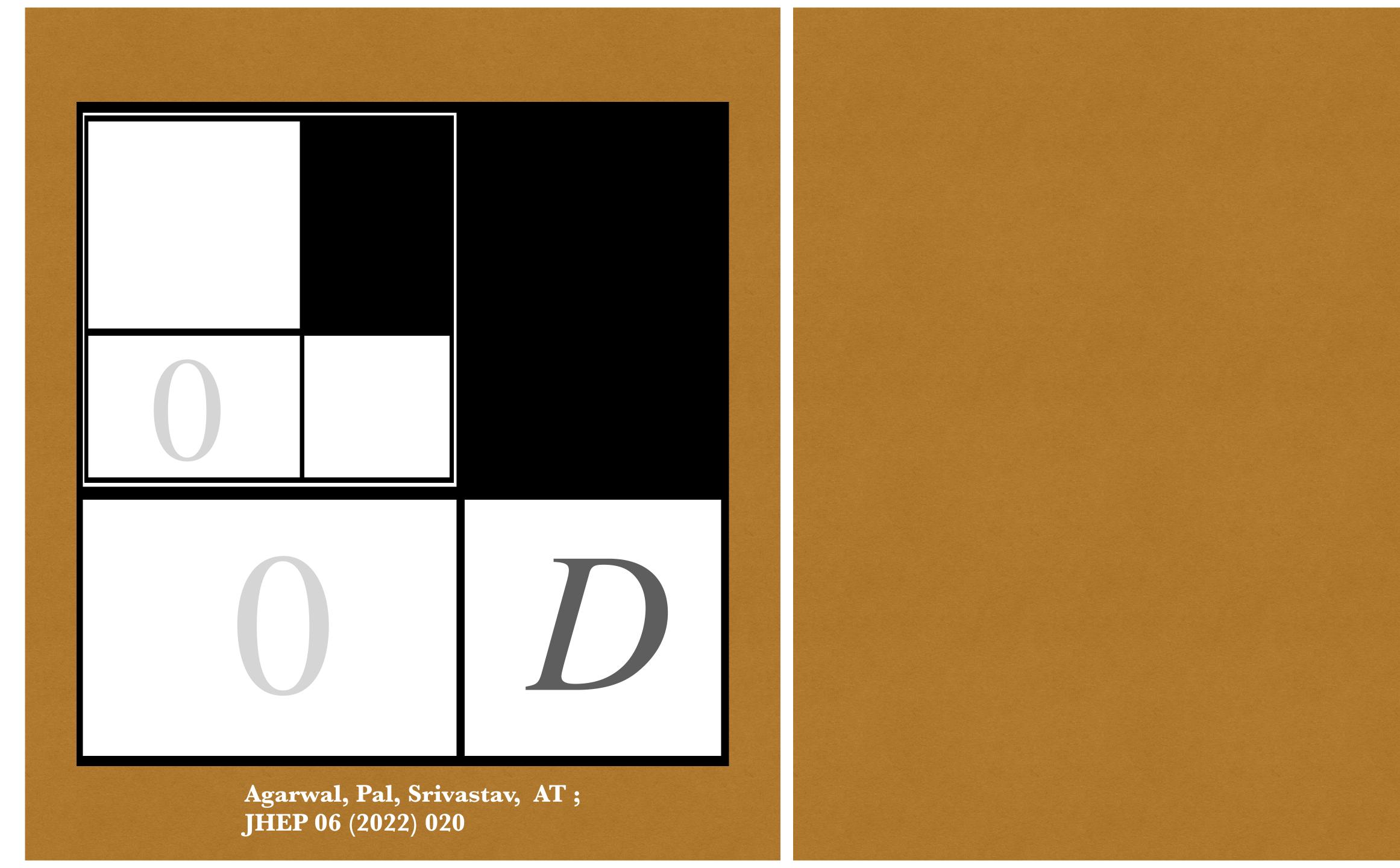
Rank can be obtained without explicit computation

Rank = # of Exponentiated Colour factors

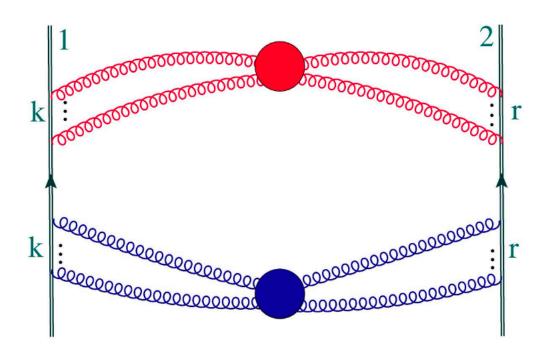
We can obtain the # of exponentiated colour factors

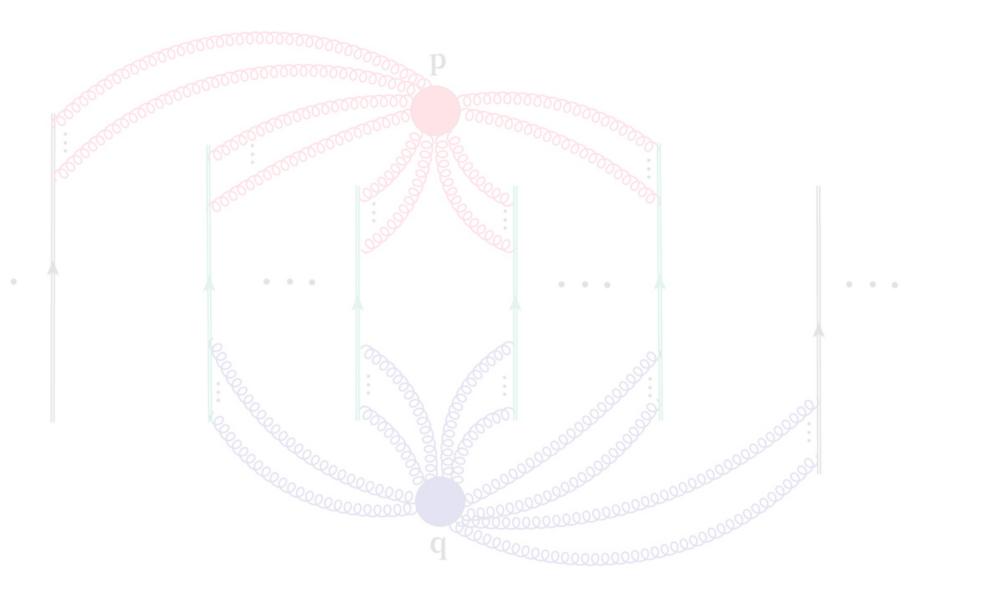


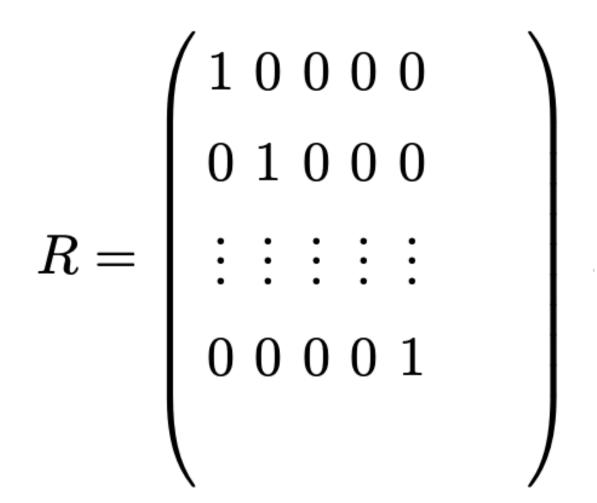




R =

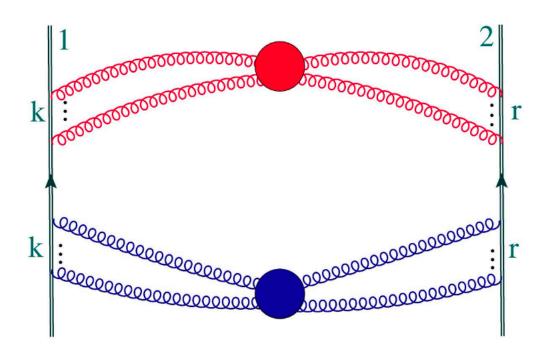


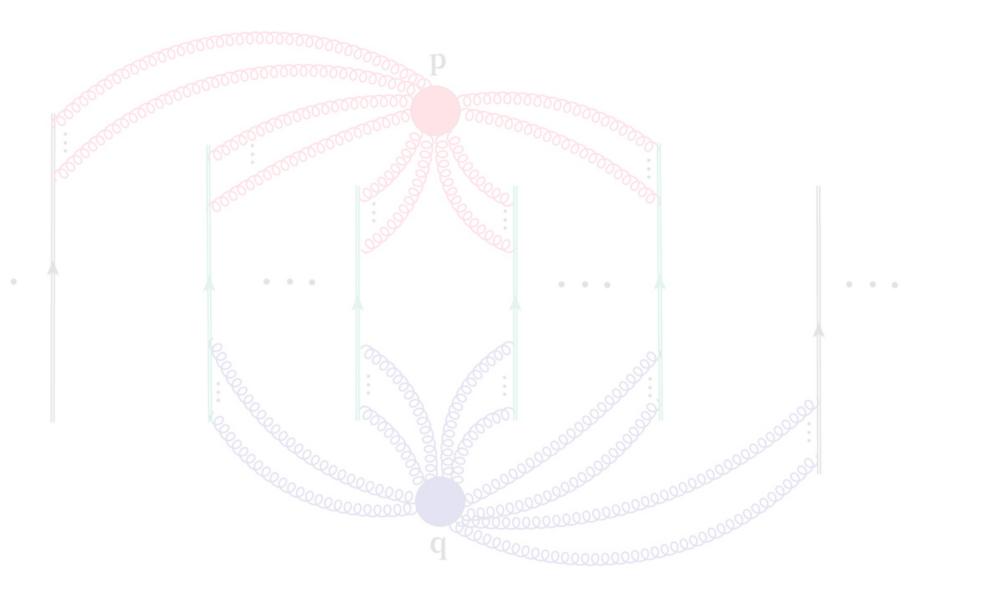




 $\begin{pmatrix} 1 & 0 & 0 & 0 & -1/2 & -1/2 \\ 0 & 1 & 0 & 0 & -1/2 & -1/2 \end{pmatrix}$ $0 \ 0 \ 1 \ \dots \ 0 \ -1/2 \ -1/2$ $0 \ 0 \ 0 \ \dots \ 1 \ -1/2 \ -1/2$ $0 \ 0 \ 0 \ \dots \ 0 \ 1/2 \ -1/2$ $(0 0 0 \dots 0 -1/2 1/2)$

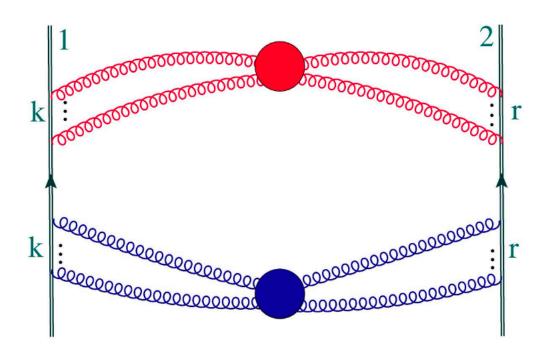
R =

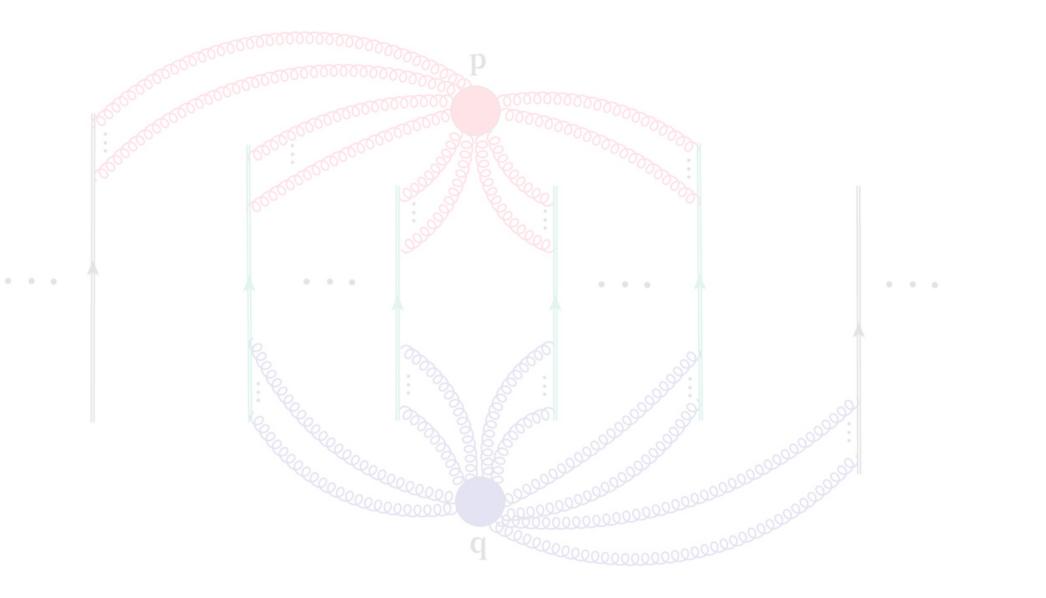




 $R = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

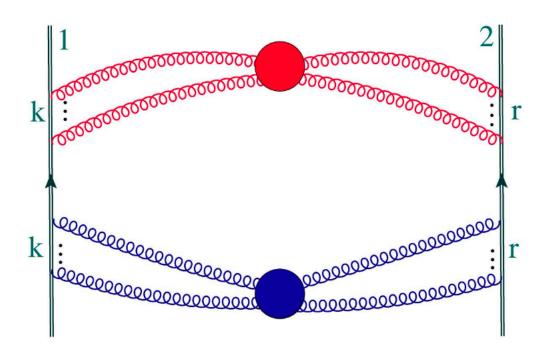
 $\begin{pmatrix} 1 & 0 & 0 & \dots & 0 & -1/2 & -1/2 \\ 0 & 1 & 0 & \dots & 0 & -1/2 & -1/2 \\ 0 & 0 & 1 & \dots & 0 & -1/2 & -1/2 \end{pmatrix}$ $0 \ 0 \ 0 \ \dots \ 1 \ -1/2 \ -1/2$ $0 \ 0 \ 0 \ \dots \ 0 \ 1/2 \ -1/2$ $(0 0 0 \dots 0 -1/2 1/2)$

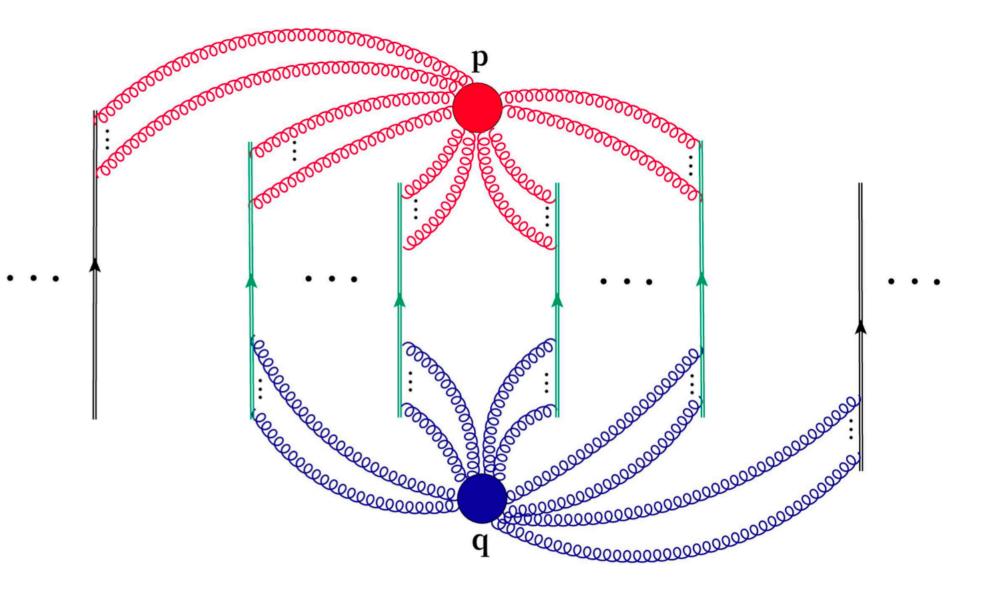




$$R = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 & 0 & -1/2 & -1/2 \\ 0 & 1 & 0 & 0 & -1/2 & -1/2 \\ 0 & 1 & 0 & -1/2 & -1/2 \\ 0 & 0 & 1 & 0 & -1/2 & -1/2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & -1/2 & -1/2 \\ 0 & 0 & 0 & 0 & 1/2 & -1/2 \\ 0 & 0 & 0 & 0 & -1/2 & 1/2 \end{pmatrix}$$

R =





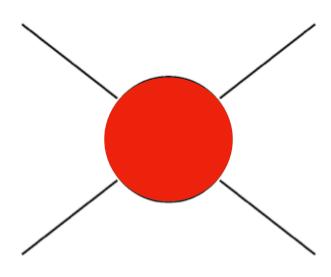
$$R = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 & 0 & -1/2 & -1/2 \\ 0 & 1 & 0 & 0 & -1/2 & -1/2 \\ 0 & 0 & 1 & 0 & -1/2 & -1/2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & -1/2 & -1/2 \\ 0 & 0 & 0 & 0 & 1/2 & -1/2 \\ 0 & 0 & 0 & 0 & -1/2 & 1/2 \end{pmatrix}$$

R =

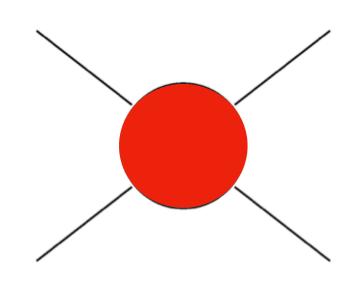
Application of fused web formalism

At 4 loops we can predict

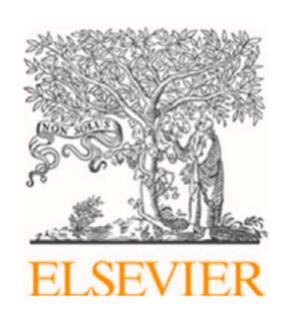
• Diagonal blocks: 60% of the matrices • Complete construction: $\sim 50\%$ of the matrices



- Using our Fused Web formalism we can obtain the diagonal blocks of R
- Diagonal Blocks are I or mixing matrices themselves
- # Exponentiated colour factors can be predicted using the diagonal blocks
- All order predictions can be made for special classes
- Important application of fused webs to boomerang webs



Thank You!



journal homepage: www.elsevier.com/locate/physrep

The infrared structure of perturbative gauge theories $\stackrel{\diamond}{=}$

Neelima Agarwal^a, Lorenzo Magnea^{b,c,*}, Chiara Signorile-Signorile^d, Anurag Tripathi^e

^o Theoretical Physics Department, CERN, CH-12 Dipartimento di Fisica and Arnold-Regge Center, l 1, I-10125 Torino, Italy

d Institut für Astroteilchenphysik, Karlsruher Institu

² Department of Physics, IIT Hyderabad, Kandi, Sangareddy, 502284, Telangana, India

ARTICLE INFO

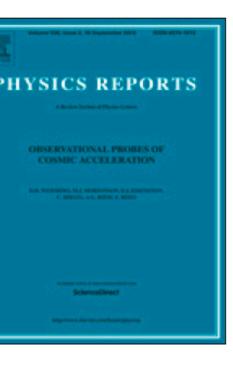
Article history: Received 27 December 2021 Received in revised form 30 September 2022

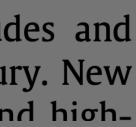
Physics Reports 994 (2023) 1–120

Contents lists available at ScienceDirect

Physics Reports

Infra. dwingence in the perturbative expansion of gauge theory amplitudes and cross sections have been a focus of theoretical investigations for almost a century. New insights still continue to emerge as higher nerturbative orders are explored and high-





Backup Slides

Most recent work by IITH QCD group

- We have improved the algorithm
- Under review

• We have also calculated contributions for scattering of massive Wilson lines

Mixing matrices

Cwebs

Replica Trick

Replicated correlator

Order N_r **term**

Combinatorics to extract ECF

Inhouse **Mathematica** Code

Set of diagrams built out of gluon correlators N_r identical copies of gauge fields are introduced,

Wilson lines are replicated

$$\mathcal{S}_{n}^{ ext{repl.}}\left(\gamma_{i}
ight)=\left[\mathcal{S}_{n}\left(\gamma_{i}
ight)
ight]^{N_{r}}=\exp\left[N_{r}\,\mathcal{W}_{n}(\gamma_{i})
ight]$$

- # of hierarchies *h*(*m*) between *m* replica numbers
- •
- Algorithm gives ECF

The algorithm from generation of diagrams \rightarrow computation ECF is implemented \rightarrow Mixing matrices

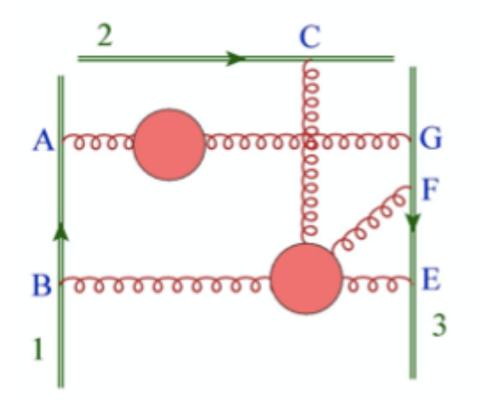
Agarwal, Danish, Magnea, **Pal, AT ; 2020**

Gardi, Laenen, Stavenga, White, 2010 See also: Vladimirov, 2014-2017

$= \mathbf{1} + N_r \mathcal{W}_n(\gamma_i) + \mathcal{O}(N_r^2)$

• Assign replica number *i* to each connected gluon correlator • Replica ordering operator to order colour generators \mathbf{T}_{k}^{i} on each line

New Results at 4 loops (3 and 2-leg webs)



Diagrams	Sequences	S
C_1	$\{\{BA\}, \{GFE\}\}$	
C_2	$\{\{BA\}, \{FGE\}\}$	
C_3	$\{\{BA\}, \{FEG\}\}$	
C_4	$\{\{AB\}, \{GFE\}\}$	
C_5	$\{\{AB\}, \{FGE\}\}$	
C_6	$\{\{AB\}, \{FEG\}\}$	

$$(YC)_1 = if^{af}$$
$$-if$$

Exponentiated **Colour Factors**

 $(YC)_3 = -if^{abm}f^{bcg}f^{efg}\mathbf{T}_1^m\mathbf{T}_2^c\mathbf{T}_3^e\mathbf{T}_3^f\mathbf{T}_3^a$

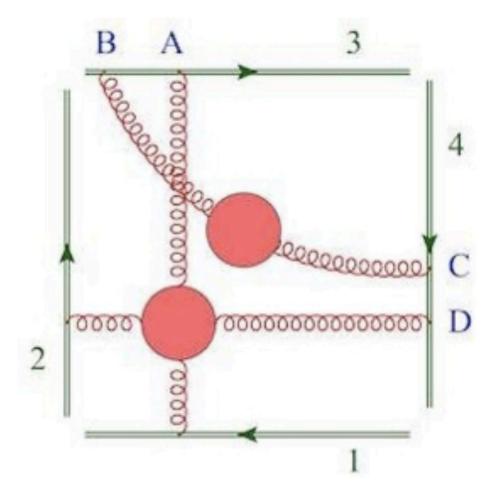
AT et al (to appear)

 ${}^{fk}f^{bcg}f^{efg}\mathbf{T}_1^b\mathbf{T}_1^a\mathbf{T}_2^c\mathbf{T}_3^e\mathbf{T}_3^k + if^{aeh}f^{bcg}f^{efg}\mathbf{T}_1^b\mathbf{T}_1^a\mathbf{T}_2^c\mathbf{T}_3^h\mathbf{T}_3^f$ $f^{abm}f^{bcg}f^{efg}\mathbf{T}_1^m\mathbf{T}_2^c\mathbf{T}_3^e\mathbf{T}_3^f\mathbf{T}_3^a$

 $(YC)_2 = if^{afk} f^{bcg} f^{efg} \mathbf{T}_1^b \mathbf{T}_1^a \mathbf{T}_2^c \mathbf{T}_3^e \mathbf{T}_3^k - if^{abm} f^{bcg} f^{efg} \mathbf{T}_1^m \mathbf{T}_2^c \mathbf{T}_3^e \mathbf{T}_3^f \mathbf{T}_3^a$

 $(YC)_4 = if^{afk} f^{bcg} f^{efg} \mathbf{T}_1^a \mathbf{T}_1^b \mathbf{T}_2^c \mathbf{T}_3^e \mathbf{T}_3^k + if^{aeh} f^{bcg} f^{efg} \mathbf{T}_1^a \mathbf{T}_1^b \mathbf{T}_2^c \mathbf{T}_3^h \mathbf{T}_3^f$ $(YC)_5 = if^{afk} f^{bcg} f^{efg} \mathbf{T}_1^a \mathbf{T}_1^b \mathbf{T}_2^c \mathbf{T}_3^e \mathbf{T}_3^k$

 $\mathbf{W}_{4.\,\mathrm{I}}^{(1,0,1)}(1,1,2,2)$



Diagrams	Sequences	S-factors	$\begin{pmatrix} 1 \\ - 1 \end{pmatrix} = \begin{pmatrix} -1 \\ - 1 \end{pmatrix}$
C_1	$\{\{BA\}, \{CD\}\}$	1	$\begin{pmatrix} 2 & 0 & 0 & 2 \\ 1 & 1 & 0 & 1 \end{pmatrix}$
C_2	$\{\{BA\}, \{DC\}\}$	0	$R = \begin{bmatrix} -\frac{1}{2} & 1 & 0 & -\frac{1}{2} \\ 1 & 0 & 1 & 1 \end{bmatrix} D = (1$
C_3	$\{\{AB\}, \{CD\}\}$	0	$-\frac{1}{2} 0 1 - \frac{1}{2}$
C_4	$\{\{AB\}, \{DC\}\}$	1	$\left(-\frac{1}{2} \ 0 \ 0 \ \frac{1}{2} \right)$

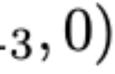
Exponentiated **Color factors**

$$(YC)_1 = if^{abg} f^{cdg} f^{edh} \mathbf{T}_1^a \mathbf{T}_1^a$$

 $(YC)_2 = -if^{abg} f^{cdg} f^{cej} \mathbf{T}_1^a$
 $(YC)_3 = if^{abg} f^{cdg} f^{edh} \mathbf{T}_1^a \mathbf{T}_1^a$

Agarwal, Danish, Magnea, Pal, AT; 2020

- $\mathbf{\Gamma}_2^b \mathbf{T}_3^e \mathbf{T}_3^c \mathbf{T}_4^h i f^{abg} f^{cdg} f^{cej} \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^j \mathbf{T}_4^d \mathbf{T}_4^e,$ $_{1}^{a}\mathbf{T}_{2}^{b}\mathbf{T}_{3}^{j}\mathbf{T}_{4}^{d}\mathbf{T}_{4}^{e}\,,$
- $\mathbf{\Gamma}_2^b \mathbf{T}_3^e \mathbf{T}_3^c \mathbf{T}_4^h f^{abg} f^{cdg} f^{cej} f^{edh} \mathbf{T}_1^a \mathbf{T}_2^b \mathbf{T}_3^j \mathbf{T}_4^h$.



Results at 4 loops

Wilson line Correlators (Cwebs)	# of webs	Largest dimension of mixing matrix
5 legs	9	24
4 legs	21	24
3 legs	23	36
2 legs	8	36

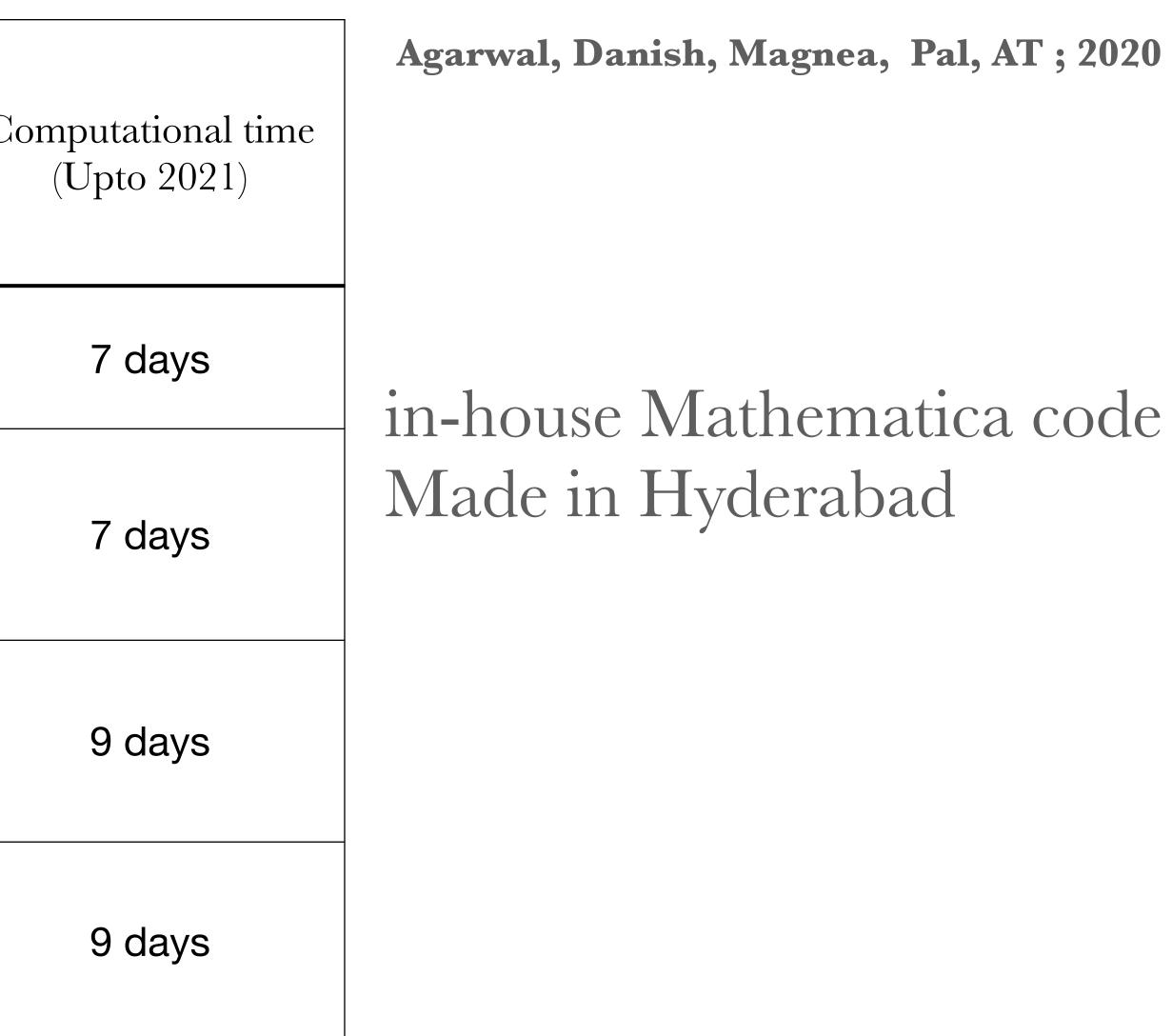
Fubini numbers 1,3,13,75,541,4683, ... Generating Function of Fubini numbers h(m) $\frac{1}{2 - \exp(x)} - 1 \equiv \sum_{m=1}^{\infty} h(m) \frac{x^m}{m!}$

Agarwal, Danish, Magnea, Pal, AT; 2020

Loop order (m)	Maximum number of hierarchies
1	1
2	3
3	13
4	75
5	541
6	4683

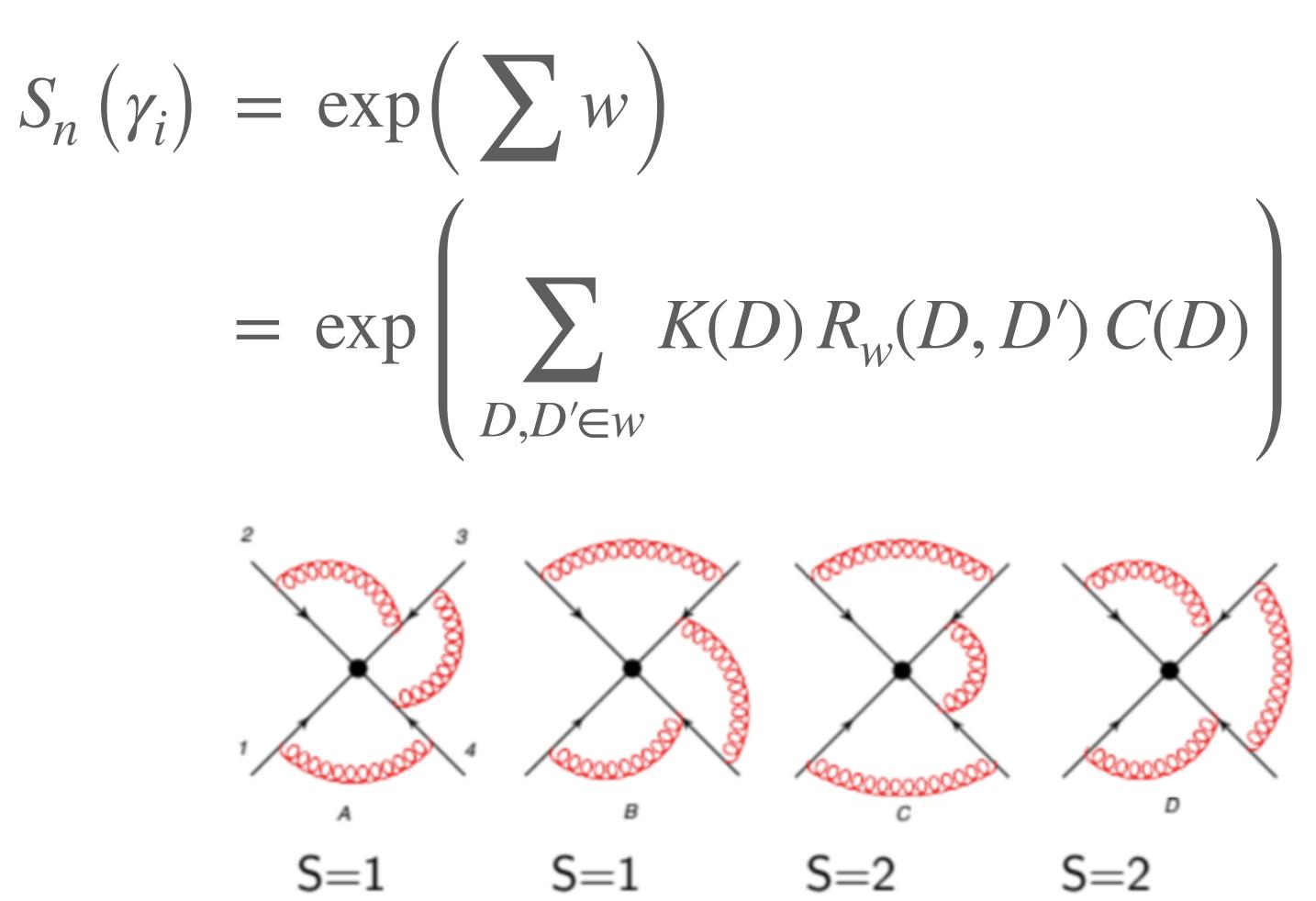
Results at 4 loops

Wilson line Correlators (Cwebs)	# of webs	Largest dimension of mixing matrix	C
5 legs	9	24	
4 legs	21	24	
3 legs	23	36	
2 legs	8	36	



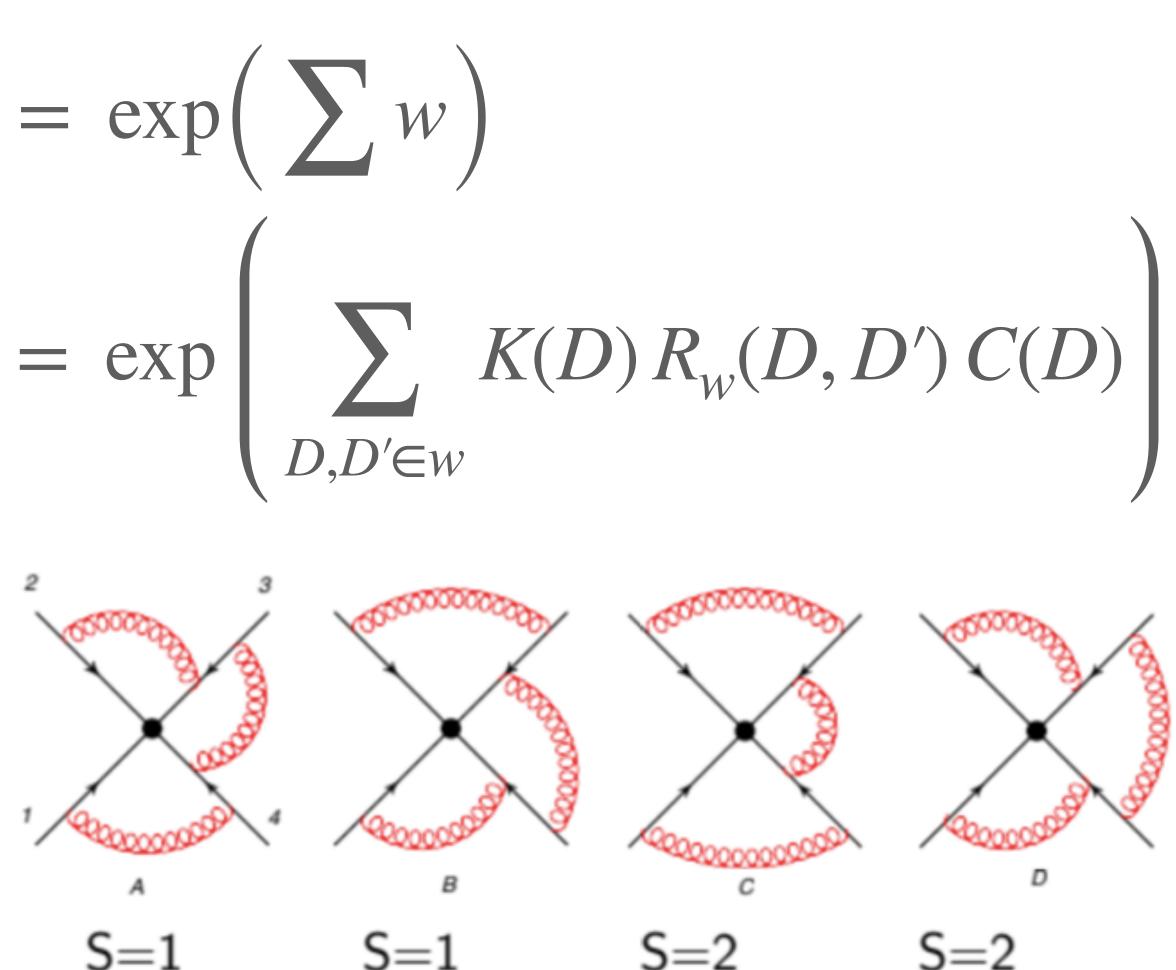
Web (w): A set of diagrams closed under permutations of the gluon attachments on the Wilson lines.

The exponent $W(\gamma_i)$ grouped into webs



$R_w(D,D')$ Web mixing matrix

A 3 loop web 4×4 mixing matrix



(Gardi, Smillie, White, et al)

