New Physics with $N_{\rm eff}$ in the CMB

Purusottam Ghosh

The Institute of Mathematical Sciences (IMSc)

Presentation based on: arXiv:2404.10077 (Accepted in PRD) and arXiv:2312.16304 (EPJC 83 (2023) 9, 880)

with D. K. Ghosh, Sk Jeesun and R. Srivastava

TAPP @ **IMSc** (25-27 September 2024) **BSM Interactions:** Between SM fermions and Light mediators (ALP, light gauge boson, etc.).

Note: The BBN constraint is also applicable here.

- Around BBN (after e^+e^- annihilation): neutrinos are the 2nd most abundant particles in the Universe.
- $N_{\rm eff}$ associated with relativistic DOF.

At
$$T \ll m_e$$
: $N_{\text{eff}} \propto \left(\frac{\rho_{\nu_L}(T_{\nu})}{\rho_{\gamma}(T_{\gamma})}\right)$

It is a crucial parameter in cosmology describing the dynamics of the thermal history of the Universe.

• <u>CMB</u>: Planck 2018 data estimates $N_{\text{eff}}^{\text{CMB}} = 2.99^{+0.33}_{-0.34}$ at 95% CL assuming Λ CDM cosmology.

• **BBN** :
$$N_{\text{eff}} = 2.89^{+0.63}_{-0.57}$$
 at 2σ (Varying N_{eff} and Y_p).

Pisanti et al. 2011.11537

$$N_{\rm eff}^{\rm UL}({\rm BBN}) = 3.51$$
 and $N_{\rm eff}^{\rm UL}({\rm CMB}) = 3.33$.

EFT SM Ints.:
$$\mathcal{L}_{\nu-e}^{\mathrm{SM}} \supset \frac{G_F}{\sqrt{2}} \left[\overline{\nu} \gamma^{\mu} \nu \right] \left[e^+ \gamma_{\mu} (g_V - g_A \gamma^5) e^- \right]$$

At
$$T_{\gamma} \sim \text{few MeV}: \quad \boxed{\nu_L, \overline{\nu_L}} \xleftarrow{\text{Weak Int.}} e^-, e^+ \xleftarrow{\text{EM Int.}} \gamma \Rightarrow T_{\gamma} = T_{\nu}$$

At $T_{\gamma} \lesssim m_e: \quad \boxed{\nu_L, \overline{\nu_L}} \qquad e^-, e^+ \longrightarrow \qquad \gamma \Rightarrow T_{\gamma} \neq T_{\nu}$

• At
$$T < m_e$$
: $N_{\text{eff}} = \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{\rho_{\nu_L}(T_{\nu})}{\rho_{\gamma}(T_{\gamma})}\right) = 3 \times \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \left(\frac{T_{\nu}}{T_{\gamma}}\right)^4$

- Planck 2018 data: $N_{\text{eff}}^{\text{CMB}} = 2.99_{-0.34}^{+0.33}$ at 95% CL.
- SM contribution: $N_{\mathrm{eff}}^{\mathrm{CMB}}\simeq 3.043$. Escudero, et al. arXiv:2306.05460

$$\Delta N_{\rm eff}^{\rm CMB}|_{\rm UL} = N_{\rm eff}^{\rm CMB}({\rm Planck}) - N_{\rm eff}^{\rm CMB}({\rm SM}) \simeq 0.28 \ | \ {\rm with} \ 95\% \ {\rm CL}.$$

The additional contribution to $N_{\text{eff}} \rightarrow \text{Scope}$ of new physics.

• Solution: Non statndard neutrino interactions with the light dark mediator (ALP, light gauge boson, etc.). $U(1)_{L_{H}-L_{T}}$: JHEP 03 (2019) 071, PLB 834 (2022) 137463; $U(1)_{B-L}$: arXiv:2308.07955.

Our Contributions: We considered a generic $U(1)_X$ model with arbitrary charge assignments.

• Specific anomaly-free charge assignments \rightarrow

 $X: B - L, L_i - L_j (i \neq j), B - 3L_i, B_i - L_j$ etc..

• SM+ light Z' originated from generic $U(1)_X$ model with $T \sim \mathcal{O}(\text{MeV})$

$$\mathcal{L}_{\text{int}}^{Z'} \supset g_X \left(X_3 \bar{\nu}_\tau \gamma^\alpha P_L \nu_\tau + X_2 \bar{\nu}_\mu \gamma^\alpha P_L \nu_\mu \right) Z'_\alpha \\ + g_X \left(X_1 \bar{\nu}_e \gamma^\alpha P_L \nu_e + X_1 \bar{e} \gamma^\alpha e \right) Z'_\alpha$$

Parameters: Light gauge boson: $\{M_{Z'}, g_X\}$ $U(1)_X$ Lepton Charges : $\{X_1, X_2, X_3\}$

Temperature evolution for the SM (e^{\pm}, γ, ν_L) and BSM (Z') specices:

$$\begin{split} \frac{dT_{\nu_L}}{dt} &= -\left(4H\rho_{\nu_L} - \frac{\delta\rho_{\nu_L \to e^{\pm}}}{\delta t} + \frac{\delta\rho_{Z' \to \nu_L}}{\delta t}\right) \left(\frac{\partial\rho_{\nu_L}}{\partial T_{\nu_L}}\right)^{-1}; \quad (T_{\nu_e} = T_{\nu_{\mu}} = T_{\nu_{\tau}}) \\ \frac{dT_{Z'}}{dt} &= -\left(3H\left(\rho_{Z'} + P_{Z'}\right) - \frac{\delta\rho_{Z' \to \nu_L}}{\delta t} - \frac{\delta\rho_{Z' \to e^{\pm}}}{\delta t}\right) \left(\frac{\partial\rho_{Z'}}{\partial T_{Z'}}\right)^{-1}; \quad (Z': \text{ in thermal bath}) \\ \frac{dT_{\gamma}}{dt} &= -\left(4H\rho_{\gamma} + 3H\left(\rho_e + p_e\right) + \frac{\delta\rho_{\nu_L \to e^{\pm}}}{\delta t} + \frac{\delta\rho_{Z' \to e^{\pm}}}{\delta t}\right) \left(\frac{\partial\rho_{\gamma}}{\partial T_{\gamma}} + \frac{\partial\rho_e}{\partial T_{\gamma}}\right)^{-1}, \end{split}$$

 $\begin{array}{c} & \Delta N_{\rm eff} \\ \mathcal{L}_{\rm int}^{Z'} \supset g_X \left(X_{2(3)} \bar{\nu}_{\mu(\tau)} \gamma^{\alpha} P_L \nu_{\mu(\tau)} \right) Z'_{\alpha} + g_X \left(X_1 \bar{\nu}_e \gamma^{\alpha} P_L \nu_e + X_1 \bar{e} \gamma^{\alpha} e \right) Z'_{\alpha} \end{array}$

Light gauge boson: $\{M_{Z'}, g_X\}$:: Lepton Charges : $\{X_1, X_2, X_3\}$

Any increase in the effective coupling (X_1g_X) leading to an increment in N_{eff} .

Purusottam Ghosh

 $\Delta N_{\rm eff}$ Impact of light gauge boson on $N_{\rm eff}$

 $\mathcal{L}_{\text{int}}^{Z'} \supset g_X \left(X_{2(3)} \bar{\nu}_{\mu(\tau)} \gamma^{\alpha} P_L \nu_{\mu(\tau)} \right) Z'_{\alpha} + g_X \left(X_1 \bar{\nu}_e \gamma^{\alpha} P_L \nu_e + X_1 \bar{e} \gamma^{\alpha} e \right) Z'_{\alpha}$

 $\Delta N_{\rm eff}$ $U(1)_X$ models (anomaly free)

Models	$\mathbb{X}_{Q_i}(\mathbb{X}_{u_i} = \mathbb{X}_{d_i})$	X_1	X_2	X_3
$\mathbf{B} - \mathbf{L}$	$(1/3,\ 1/3,\ 1/3)$	-1	-1	-1
$\mathrm{B}-3\mathrm{L_e}$	$(1/3,\ 1/3,\ 1/3)$	-3	0	0
$B - 3L_{\mu}$	$(1/3, \ 1/3, \ 1/3)$	0	-3	0
$B - 3L_{\tau}$	$(1/3,\ 1/3,\ 1/3)$	0	0	-3
${f L}_{f e}-{f L}_{\mu}$	(0,0,0)	1	-1	0
${f L_e}-{f L_ au}$	(0,0,0)	1	0	-1
$L_{\mu} - L_{\tau}$	(0,0,0)	0	1	-1
$B_1 - 3L_e$	(1,0,0)	-3	0	0
$\mathbf{B_2} - \mathbf{3L_e}$	(0,1,0)	-3	0	0
${f B_3-3L_e}$	(0,1,0)	-3	0	0
$B_1 - 3L_\mu$	(1, 0, 0)	0	-3	0
$B_2 - 3L_\mu$	(0,1,0)	0	-3	0
$B_3 - 3L_\mu$	(0,1,0)	0	-3	0
$B_1 - 3L_{\tau}$	(1, 0, 0)	0	0	-3
$B_2 - 3L_{\tau}$	(0,1,0)	0	0	-3
$B_3 - 3L_{\tau}$	(0,1,0)	0	0	-3

Purusottam Ghosh

Purusottam Ghosh

September 26, 2024 12 / 19

conclusions

- The new interaction of Z' with both e^{\pm} and ν_i , can potentially impact the neutrino decoupling consequently altering N_{eff} .
- In some $M_{Z'}$ region, the N_{eff} bound from Planck 2018 is more stringent than the low energy experimental constraints.
- These $U(1)_X$ models are widely used used in particle physics as well as cosmology. The bound from N_{eff} derived by us will be extreamly relevant for the community.

thank you!

Email id pghoshiitg@gmail.com

 H_0 Tension: Discrepancy between the values of expansion rate H_0 obtained from CMB and local measurement.

- CMB measurement (PLANCK 2018) : $H_0 = 67.36 \pm 0.54 \text{ Km } s^{-1} \text{ Mpc}^{-1}$
- Distance measurement (SHOES) : $H_0 = 73.04 \pm 1.04 \text{ Km } s^{-1} \text{ Mpc}^{-1}$

Riess et al. (arXiv:2112.04510)

• Discrepancy of around 6σ between two measurements.

Additional ΔN_{eff} : reduce the H_0 tension from 6σ to 4.6σ

Riess et al. JCAP10(2016)019

Physical Scenario	$N_{\rm eff}^{\rm SM} - 3$
Instantaneous ν decoupling	0
residual $e^+e^- \rightarrow \bar{\nu}\nu$	0.03
QED corrections to $\rho_{e^+e^-}$ and ρ_{γ}	0.01
NO	0.0007
NLO QED coorections $(e^+e^- \leftrightarrow \bar{\nu}\nu \text{ rates})$	0.0007
Escudero, M., et al. (2023). arXiv:2306.05460	-0.0007

Contributions to $N_{\rm eff}$ in the SM. $N_{\rm eff}^{\rm SM} = 3.0432(2) \simeq 3.043$ (arXiv:2306.05460).

NLO QED Contributions to N_{eff} in the SM. (Escudero, M., et al. arXiv:2306.05460).

Impact of N_{eff} on CMB and $P_m(k)$: Increase N_{eff} and rescal ω_m and ω_{Λ} to fix z_{eq} and z_{Λ} .

Ref.: Taken From Julien Lesgourgues's Presentation.

Experiments	Upper bound on $N_{\rm eff}(2\sigma)$	
Planck 2018 [4]	$N_{\rm eff} < 3.33$	
Simon Observatory [61]	$N_{\rm eff} < 3.14$	
CMB-S4 [62]	$N_{\rm eff} < 3.10$	
CMB-HD [63]	$N_{\rm eff} < 3.07$	

Constraints

Experiments	Process	Observations	Refs.
$\begin{array}{c} & E\nu ES\\ (elastic electron-neutrino\\ scattering) \end{array}$	$ \nu \ e \to \nu \ e $ incoming particle: solar $ \nu \ (\nu_e) $	recoil rate of e^-	XENON [21, 50], LZ[22], Borexino [19, 20, 51]
$\begin{array}{c} {\rm CE}\nu{\rm NS}\\ {\rm (coherent\ elastic\ neutrino\ -nucleus\ scattering)} \end{array}$	$\nu \ N \rightarrow \nu \ N$ nuclei N: {CsI, Ar}	recoil rate of nucleus	CsI and Ar [35, 43, 52] XENON [21, 22]
Fixed target experiments	$\begin{array}{c} e(p) \ N \rightarrow e(p) \ N \ Z' \\ Z' \rightarrow e^+ e^- \end{array}$	displaced vertex with di-electron	E137 [53], E141 [54], E774 [34] etc.
Neutrino trident	$\nu \ N \rightarrow \nu \ N \ \mu^+ \ \mu^-$	di-muon final state	LBNE [55], CCFR [56], DUNE [57]
ATLAS and CMS	$\begin{array}{c} (i) \ pp \to Z' \to \mu^+ \mu^- \\ (ii) \ pp \to h, \phi \to Z^* Z', \\ Z^* \ Z' \to 4\ell \end{array}$	(<i>i</i>) oppositely charged muons (<i>ii</i>) 4ℓ final state	(i) [58] (ii) [59, 60]
BaBar, Belle	$e^+ e^- \to \gamma_{\rm ISR} Z' , Z' \to \ell^+ \ell^- (\ell = e, \mu)$	lepton charged tracks with γ	BaBar [17, 33] Belle [32]
KLOE	$e^+ e^- \to \gamma_{\rm ISR} Z',$ $Z' \to \mu^+ \mu^-, \pi^+ \pi^-$	charged tracks with γ	KLOE [61]