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Introduction
Deep-inelastic scattering (DIS) provides valuable information on the internal structure of hadrons at high energies in terms of their partonic constituents namely
quarks, anti-quarks and gluons, and also of the underlying strong interaction dynamics through QCD through structure functions (SF). In DIS we sum up all the final
states except the scattered lepton. In semi-inclusive DIS (SIDIS) experiments, one observes the state of a specific hadron in the final state, in addition to that of
scattered lepton. Such an observable will be sensitive to dynamics that governs the fragmentation of parton into a hadron.

Differential Hardonic Cross section
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Lµν is the leptonic tensor andWµν is hadronic tensor. Using the property
that W µν is 2nd rank tensor, current conservation and symmetries, it can be
parameterized in terms of SFs:
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These dimensionless SFs are Lorentz invariant which are not calculable in
perturbation theory.
Parton Model
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We’ll use Parton Model to write SFs as:
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Here, µ2
F is the factorization scale.

▶ fadx1: The probability of finding a parton of type ‘a’ which carries a
momentum fraction x1 of the parent hadron H .

▶ Dbdz1: The probability that a parton of type ‘b’ will fragment into
hadron H ′ which carries a momentum fraction z1 of the parton.

▶ FI,ab are the finite CFs that can be computed perturbatively, it is
related to partonic cross section.

Motivation
▶ CFs were known only upto NLO accuracy1.
▶ Adding more corrections will decrease scale uncertainty, making

perturbation theory more reliable.
▶ Extracting fragmentation function Db.
Partonic Cross section

Computation of CFs starts from the parton level cross section denoted by
σ̂I,ab, where we defined,
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Here, Pµν
I are the projectors to project out corresponding CFs and |Mab|2

is the squared amplitude for the process a(pa) + γ∗(q)→ ‘b′(pb) + X ′.
Beyond leading order PCS gets contribution from loop diagrams as well as
real emission diagrams.
▶ In the high momentum region the loop integral gives divergences, which

are removed by renormalization procedure.
▶ Presence of massless particles gives rise to Infrared divergences (soft and

collinear).
▶ Infrared divergences cancel among virtual and real emission processes,

except for the collinear divergences related to the a and b partons in the
initial state and the final fragmentation state respectively.

Mass factorisation: Left over divergences can be factored out into
Altarelli-Parisi (AP) kernels at µF scale,
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Flow Chart
▶ Generation of set of Feynman diagrams using QGRAF.
▶ Output of QGRAF to FORM form to get amplitude for individual diagrams.
▶ Used FORM extensively to do symbolic calculation like Lorentz

contractions, Dirac algebra, handling Gell-Mann matrices.
Sample Diagrams:

Loop and Phase-Space Integrals
Using, the fact that the integral of a total derivative vanishes within
DimReg. and the property of scaleless integral, one gets linear
Integration-by-parts (IBP) identities to write loop integrals in terms of the
basis of integrals called Master Integrals (MIs).∫
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For Phase-space integrals, we used Reverse Unitarity method for converting
the integrals into loop integrals and performing reduction to get set of MIs.

δ(p2 −m2)→
i

p2 −m2 + iδ
− c.c.

can be
almost forgot

We used LiteRed to generate IBP identities and got total ‘21′ MIs in
phase space calculation. To solve them we used Differential equation
method.
Solving MIs

For phase-space integrals, we can set up differential system by taking
derivative w.r.to external variables (x′, z′) and also one can make a basis
transformation, f⃗ → J⃗ = T̂−1f⃗ such that the differential eq. is in ϵ-form,
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= Â2(x′, z′, ϵ)f⃗

→


∂J⃗
∂x′
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The solution of the system is as follows:
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]
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Boundary integrals are calculated at x′→ 1 and z′→ 1 using
conventional method (choosing an appropriate frame).
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Figure 1: Dependence of gπ+

1 on µ2
R and µ2

F in 7-point variation with
√

s = 45 GeV.
▶ Inclusion of NNLO corrections reduces scale dependence compared to previous orders.
▶ QCD Corrections for polarized case are negative.
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