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• Understanding baryon-baryon interactions from first principles is crucial in nuclear physics, 
as these interactions formulate the foundation of existence of atomic nuclei.  

• Our focus is on studying a system of six quarks, which primarily resemble two baryons 
bound together and is referred to as dibaryon. 

• Despite extensive experimental efforts, Deuteron remains the only confirmed dibaryon 
bound state, with recent experimental evidence suggesting an unstable light dibaryon, 
d*(2380). 

We utilize five set of lattice ensembles with  dynamical HISQ fields generated 
by MILC collaboration [2]. For valence charm and strange quark propagators we use the 
overlap action.  The details about the lattice ensembles is shown in the below figure. 

Nf = 2 + 1 + 1

Lattice Setup Masses from Lattice
The effective masses from the lattice are calculated using the Euclidean two point correlator 
function as: 

 

where  are the desired interpolating operators and . Then the 

effective mass can be calculated as: .  
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• We assume only s-wave interactions in two baryon systems. As baryons are color singlets and we work with single flavor systems, hence spin must be 
anti-symmetric which corresponds to even spin. 

•  The dibaryon operator constructed from the linear combinations of the single baryon operators with the help of CG coefficients as  
where baryon operator is given as .  

• Subduction coefficients are used to project the continuum based operators onto their suitable octahedral group on lattice. Baryon with spin 3/2 is 
represented by  irrep. Dibaryon with spin 0 in continuum subduces to one dimensional  irrep and dibaryon with spin 2 in continuum subduces to 
two dimensional  and three dimensional  irrep. Dibaryon operator with spin 0 is given as (similar 5 spin 2 operators): 

 

 corresponds to relativistic or non-relativistic embedding as given below [3].                                                 
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Dibaryon Operators
A random contraction of operators 
for dibaryons at source and sink 
time slice. 

720 such contractions, but 
maximum four contractions are 
unique depending upon embedding 
combinations. 
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Energy Levels
The following are the plots of  dependence for  
values of baryon, spin 0 dibaryon and one operator of  
spin 2 dibaryon. The results corresponds to charm 
system with .
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𝒟6c 𝒟6s
    Difference of energy of dibaryon with spin 0                                
    and spin 2 from baryonic threshold for charm     
    dibaryon.

        Difference of energy of dibaryon with spin 0   
        and spin 2 from baryonic threshold for  
        strange dibaryon.    

Summary
• We observe a positive shift in the S=2 channel, indicating a repulsive interaction and inability to host any bound state for both 
strange and charm systems. 

• In the charm sector, for spin zero, there is a slight tendency towards negative shifts, although these shifts have smaller magnitudes. 
• In the strange sector, for spin zero, the results generally suggest a non-interacting scenario, with weak interactions and potentially 
no bound states. 

• A more precise conclusion can only be drawn with larger statistics and a comprehensive finite-volume amplitude study.

Ground state energy for  lattice for all five 
dibaryon spin 2 operators, spin 0 operator and 
comparison with  twice of baryon ground state.  

The comparison is for charm dibaryon. All the five 
operators for spin 2 shows similar behaviour. Similar 
analysis is observed for strange dibaryon.

Ns = 48
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• Recent experimental observations of exotic multi quark systems by Belle and LHCb 
experiments have increased interest in the lattice hadron spectroscopy of exotic systems 
beyond the conventional hadrons. 

• We primarily concentrate on heavy dibaryons, as the large separation of scales between 
heavy quark masses and confinement facilitates spectroscopy analysis with cleaner signals.  

• In this work, we focus on single-flavored dibaryons composed of either strange or charm 
quarks, building on recent lattice studies of dibaryons composed solely of bottom quarks [1].
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