Exploring the Impact of Extra Dimensions on the Equation of State of Baryonic Matter and the Structure of Neutron Stars

Debabrata Deb IMSc, Chennai

Exploring the Impact of Extra Dimensional spacetime on Neutron Star Structure and Equation of State

arXiv: 2403.07174

In Collaboration with:

Prof. M. Bagchi IMSc, Chennai

Prof. S. Banik BITS, Hyderabad

Extra Spatial Dimensions?

- □ There are many theoretical considerations that support the existence of extra spatial dimensions (Lugones & Arbañil 2017, Chakravarti et al. 2018, Arbañil et al. 2019)
- □ Initially, these extra dimensions naturally emerged in string theory, which mandates ten or more dimensions.
- □ Later, the presence of extra dimensions was revisited to address the 'gauge hierarchy problem' (Arkani et al 1998, Antoniadis1988, Perez-Lorenzana2005). This problem arises due to the significant and seemingly unrelated hierarchy between the electro-weak symmetry breaking scale (around 10³GeV) and the Planck scale (about 10¹⁸GeV).

Extra Spatial Dimensions?

- □ There are a few observational arguments that favor the presence of extra spatial dimensions (GW170817) [Pardo et al. 2018, Abbott et al 2019]
- □ GW luminosity distance of 40^{+8}_{-14} Mpc (Abbott et al. 2017) Vs EM luminosity distance of $40.7^{+2.4}_{-2.4}$ Mpc (Cantiello et al. 2018)
- Possibility of unequal luminosity distances due to extra spatial dimension !! cannot be dismissed (Deffayet and Menou 2007, Liu et al. 2023)

ries of gravity with a characteristic length scale R_c of the order of the Hubble radius $R_H \sim 4 \,\text{Gpc}$, such as the well known Dvali-Gabadadze-Porrati (DGP) models of dark energy [88, 89], small transition steepnesses $(n \sim \mathcal{O}(0.1))$ are excluded by the data. Our analysis cannot conclusively rule out DGP models that provide a sufficiently steep transition (n > 1) between GR and the onset of gravitational leakage. Future LIGO-Virgo observations of binary neutron star mergers, especially at higher redshifts, have the potential to place stronger constraints on higher-dimensional gravity.

B. P. Abbott et al. Phys. Rev. Lett. 123, 011102 (2019)

M-R curves for Neutron Stars in 4D GR

 The Tolman-Oppenheimer-Volkoff (TOV) equations for a spherically symmetric and static neutron star (NS)
 Maximum Mass

$$\frac{dm}{dr} = 4\pi\rho r^{2} \quad -\text{(A)} \quad \stackrel{<=\text{ Mass balance Equation}}{\underset{r(r-2m)}{\frac{dp}{dr}}} = -\frac{(\rho+p)(m+4\pi r^{3}p)}{r(r-2m)} \quad \stackrel{<=\text{ Force Balance Equation}}{\underset{r(u-2m)}{-(B)}}$$

Equation of State: To explain the strong nuclear force within NSs we have considered realistic DD2 EoS model, which describes the nuclear matter, consisting of baryonic components like n, p, alongside leptons such as e and μ. Here we consider baryons interact through the exchange of σ, ω and ρ mesons.

What did we do in https://arxiv.org/abs/2403.07174

- Investigated the influence of higher-dimensional spacetime on both the macroscopic (e.g., mass, radius) and microscopic (e.g., density, pressure) properties of neutron stars (NSs) within a higher-dimensional framework.
- Extended a realistic nuclear equation of state (EoS) to higher dimensions to accurately describe the strong interactions within neutron matter.
- Finally, verified the stability of NSs in higher-dimensional spacetime using the Buchdahl condition and stability analysis against infinitesimal radial pulsations.

Plan of present work

- What is the value of Gravitational
- constant in D-dimension?

What is the value of planck length in D-dimension?

$$\xi_D = (l_c)^{D-4} = G_D/G_4 \implies l_c$$
 is the length of extra compact dimension
(B Zwiebach (2009), A First Course in String Theory)

D-dimensional Einstein Field Equation

Generalized Einstein-Hilbert (EH) Action in D-dimensions:

$$S = \frac{1}{K_D} \int d^D x \mathcal{R} \sqrt{-g} + \int d^D x \mathcal{L}_m \sqrt{-g}$$

= (1)
Area of Unit Sphere: $S_{D-2} = \frac{2\pi^{\frac{D-1}{2}}}{\Gamma(\frac{D-1}{2})}$ - (2)
= (3)

Stress-Energy Tensor for Isotropic Fluid: $T_{\mu\nu} = \left(\rho_D + \frac{p_D}{c^2}\right) u_{\mu}u_{\nu} - p_D g_{\mu\nu}$ - (4)

Generalized Einstein Field Equation: $\mathcal{R}_{\mu\nu} - \frac{1}{2}\mathcal{R}g_{\mu\nu} = \frac{D-2}{D-3}S_{D-2}\frac{G_D}{c^4}T_{\mu\nu}$ - (5)

Basic Stellar Equations in D-dimension

D The exterior Schwarzschild spacetime metric in D-dimensional spacetime

$$ds^{2} = \left(1 - \frac{2MG_{D}}{c^{2}(D-3)r^{D-3}}\right)dt^{2} - \left(1 - \frac{2MG_{D}}{c^{2}(D-3)r^{D-3}}\right)^{-1}dr^{2} - r^{2}\sum_{i=1}^{D-2}\left(\prod_{j=1}^{i-1}\sin^{2}\theta_{j}d\theta_{i}^{2}\right) - (6)$$

- **G** Stellar Structure Equations:
- Mass Balance Equation:

$$\frac{dm}{dr} = S_{D-2}\rho_D r^{D-2} \qquad -(7)$$

- Force Balance Equation:

$$\frac{dp_D}{dr} = -\left(\rho_D c^2 + p_D\right) \frac{G_D \left[S_{D-2} p_D r^{D-1} + c^2 m (D-3)\right]}{c^2 r \left[c^2 (D-3) r^{D-3} - 2m G_D\right]} - (8)$$

- □ Simplifying Assumptions:
- Mass, density, and pressure in D-dimensions:

$$\tilde{m} = mG_D/(D-3), \tilde{\rho} = \rho_D G_D, \tilde{p} = p_D G_D$$
 - (9)

- Set $G_4 = 1$ and c = 1 for simplicity.

 Relativistic Mean-Field (RMF) Approximation in D-Dimensions is employed to solve Meson Field Equations:

$$m_{\sigma}^{2}\sigma = \sum_{B=n,p} g_{\sigma B}\rho_{DB}^{s}, \quad - (10)$$
$$m_{\omega}^{2}\omega_{0} = \sum_{B=n,p} g_{\omega B}\rho_{DB}, \quad - (11)$$
$$m_{\rho}^{2}\rho_{03} = \sum_{B=n,p} g_{\rho B}^{2}\tau_{3B}\rho_{DB}. \quad - (12)$$

Baryon Number Density (ρ_{DB}) and Scalar Number Density (ρ_{DB}^{s}):

$$\rho_{DB}^{s} = \frac{2J_{B} + 1}{(2\pi)^{D-1}} S_{D-2} \int_{0}^{k_{B}} \frac{k^{D-2} m_{B}^{\star}}{\sqrt{k^{2} + m_{B}^{\star 2}}} dk, \quad -\text{(13)}$$
$$\rho_{DB} = \frac{2J_{B} + 1}{(2\pi)^{D-1}} S_{D-2} \int_{0}^{k_{B}} k^{D-2} dk. \quad -\text{(14)}$$

$$\Box$$
 Effective Baryon Mass : $m_B^\star = m_B - g_{\sigma B} \sigma$ - (15)

Dirac Equation for Baryon Fields: $\left[\left(i\gamma^{\mu}\partial^{\mu}-\gamma^{0}\Sigma_{0}^{\tau}\right)-m_{B}^{\star}\right]\psi_{B}=0$ - (16) Here:

$$\Sigma_{0}^{\tau} = g_{\omega B}\omega_{0} + g_{\rho B}\tau_{3B}\rho_{03} + \Sigma_{0}^{R} \qquad \text{Where,} \\ - (17) \qquad \Sigma_{0}^{R} = \sum_{B} \left[-g_{\sigma B}'\sigma\rho_{BD}^{s} + g_{\omega B}'\omega_{0}\rho_{DB} + g_{\rho B}'\tau_{3B}\rho_{03}\rho_{DB} \right] \\ (\text{Rearrangement term}) \qquad - (18)$$

\Box The energy density (ρ_D) for NS matter

$$\rho_{D} = \frac{1}{2}m_{\sigma}^{2}\sigma^{2} + \frac{1}{2}m_{\omega}^{2}\omega_{0}^{2} + \frac{1}{2}m_{\rho}^{2}\rho_{03}^{2} + S_{D-2}\sum_{B=n,p}\frac{2J_{B}+1}{(2\pi)^{D-1}}\int_{0}^{k_{B}}k^{D-2}\sqrt{k^{2}+m_{B}^{\star2}}dk$$
$$+ S_{D-2}\sum_{l=e,\bar{\mu}}\frac{2J_{l}+1}{(2\pi)^{D-1}}\int_{0}^{k_{l}}k^{D-2}\sqrt{k^{2}+m_{l}^{2}}dk, \qquad - (19)$$

 $\Box \quad \text{the pressure } (p_D)$

$$p_{D} = -\frac{1}{2}m_{\sigma}^{2}\sigma^{2} + \frac{1}{2}m_{\omega}^{2}\omega_{0}^{2} + \frac{1}{2}m_{\rho}^{2}\rho_{03}^{2} + \Sigma_{0}^{R}\sum_{B=n,p}\rho_{DB}$$

+ $\frac{S_{D-2}}{D-1}\sum_{B=n,p}\frac{2J_{B}+1}{(2\pi)^{D-1}}\int_{0}^{k_{B}}\frac{2(D-2)}{\sqrt{k^{2}+m_{B}^{\star}^{2}}}dk + \frac{S_{D-2}}{D-1}\sum_{l=e,\bar{\mu}}\frac{2J_{l}+1}{(2\pi)^{D-1}}\int_{0}^{k_{l}}\frac{2(D-2)}{\sqrt{k^{2}+m_{l}^{2}}}dk - (20)$

The nucleon-meson density-dependent couplings (Typel et al 1999, 2005, 2010) : where $x=n/n_o$ $g_{\alpha B}(n) = g_{\alpha B}(n_0)f_{\alpha}(x)$ -(21) n_o = saturation density

For
$$\sigma$$
 and ω meson: $f_{\alpha}(x) = a_{\alpha} \frac{1 + b_{\alpha}(x + d_{\alpha})^2}{1 + c_{\alpha}(x + d_{\alpha})^2}$ - (22)

For ρ meson: $f_{\alpha}(x) = \exp[-a_{\alpha}(x-1)]$ - (23)

The values of the parameters $g_{\alpha B}(n_o)$, a_{α} , b_{α} , c_{α} , and d_{α} for $\alpha = \sigma$, ω and ρ are obtained through fitting the nuclear properties.

Mass-radius curve for Neutron Stars in D-dimensions

Variation of the total mass ($\log(MG_D/(D-3))$) in km^(D-3) with the total radius R in km for the different D-dimensional cases, such as D=4, 5 and 6

- □ $G_4 \neq G_5 \neq G_6 \dots \neq G_D$, we don't know the values for G_D
- □ We can employ dimensional analysis to introduce a scaling parameter ζ_D given by

$$G_D/G_4 = \zeta_D \, \mathrm{km}^{D-4}$$
 - (C)

Mass-radius curve for neutron stars in D-dimension

Variation of the total mass ($\log(MG_D/(D-3))$) in km^(D-3) with the total radius R in km for the D= 5 and 6 dimensional cases:

Buchdahl Limit and Surface Redshift for NSs in D-dimension

Buchdahl limit for D-dimension spacetime:

Buchdahl limit ensures that a neutron star is stable against gravitational collapse and provides an upper limit on how compact a neutron star can be without collapsing into a black hole

Testing stability against infinitesimal Radial Pulsation

Lagrangian perturbation of the radial pressure ($\Delta \tilde{P}(R) = \Delta P(R)G_D$) for a range of test values ω^2 within different D-dimensional spacetimes

 $\omega^2 > 0$ ensures neutron star is stable against radial perturbations for D =4, 5 and 6.

Numerical values of some physical parameters

Value	Value of Maximum	Value of	Central	Central		Surface	Compactified
of D	Mass $MG_D/(D-3)$	Corresponding	Density	Pressure	$\frac{2MG_D}{(D-3)R^{D-3}}$	Redshift	Maximum
	in $\mathrm{km}^{(D-3)}$	Radius (km)	$\widetilde{ ho}_{D,c}~({ m MeVfm^{-3}})$	$\widetilde{p}_c~({ m MeVfm^{-3}})$	()		Mass in 4-dimension (M_{\odot})
4	3.63	11.91	1064.85	501.78	0.61	0.60	2.46
5	29.49	13.58	1459.85	754.40	0.32	0.21	2.50
6	360.25	13.27	2291.54	2782.94	0.31	0.20	3.31

Value	Value of Maximum	Value of	Central	Central		Surface	Compactified
of ζ_5	Mass $MG_D/(D-3)$	Corresponding	Density	Pressure	$\frac{2MG_D}{(D-3)R^{D-3}}$	Redshift	Maximum
	in $\mathrm{km}^{(D-3)}$	Radius (km)	$\widetilde{ ho}_{D,c}({ m MeV fm^{-3}})$	$\widetilde{p}_c \; ({ m MeV fm}^{-3})$	(2 3)10		Mass in 4-dimension (M_{\odot})
3×10^{-15}	39.31	15.72	1077.23	547.73	0.32	0.21	2.88
4×10^{-15}	29.49	13.58	1459.85	754.40	0.32	0.21	2.50
5×10^{-15}	23.59	12.13	1841.52	960.35	0.32	0.21	2.24
6×10^{-15}	19.66	11.01	2296.87	1245.24	0.32	0.22	2.05

A brief Summary

- Higher dimensions significantly affect the structural properties of NSs, including density and pressure profiles, as well as enclosed masses, due to the modified DD2 model EoS.
- □ The mass-radius analysis shows a progressive increase in total mass for a constant central density as the dimensionality increases, maintaining the stability criterion $dM/d\rho_c > 0$
- Higher-dimensional NSs exhibit stability against radial oscillations, adhering to the modified Buchdahl limit for higher dimensions.
- We are exploring the potential applications how to match with any existing observational signatures

