Multi-messenger Astrophysics with high energy neutrinos and photons

Pratik Majumdar High Energy Nuclear and Particle Physics Division Saha Institute of Nuclear Physics, Kolkata

> September 27, 2024 TAPP, IMSc, Chennai

Neutrinos and Gamma rays

γ -ray astrophysics and cosmic rays (CR)

Study origin of CRs, => search for γ-rays produced by CRs close to source hadronic acceleration

 discriminate hadronic vs leptonic acceleration
 => shape of spectrum

IceCube Neutrino Telescope at South Pole

infrequently, a cosmic neutrino crashes into an atom in the ice and produces a nuclear reaction

• muon travels kilometers in the ice

detector

nuclear reaction

*Cerenkov light produced as the muon moves with relativistic speeds

optical sensors capture (and map) the light

Neutrino ToO Program with IceCube/MAGIC A pioneering effort by MAGIC since 2007

- NToO program to follow ups of real time alerts and look for correlations : smoking gun for cosmic ray acceleration
- Implementation of the program started in 2007
- Compute alert rate from back ground
- Alert to MAGIC/IACTs well-tested by 2010

E.Bernardini (PI), R.Franke, PM K.Satalecka, W.Bhattacharyya

[M. Ackermann et al. arXiv:0709.2640]

Real Time Alerts from IceCube

 Since April 2016, the IceCube collaboration began releasing real-time alerts of detections of high-energy (>100 TeV) neutrinos

Search for neutrinos correlated with gamma-ray blazars :

No clear detection

Sporadic claims of TeV " orphaned flares"

ApJ, 807, 46 2015

Till 2017, no clear detection of a neutrino event with other wavelengths

ID	Edep (TeV)	Time (MJD)	Decl. (deg.)	R.A. (deg.)	Ang. Err. (deg.)	Topology		
55		56798.73029				Coincident		
56	$104.2^{+9.7}_{-10.0}$	56817.38958	-50.1	280.5	6.5	Shower		
57	$132.1^{+18.1}_{-16.8}$	56830.52665	-42.2	123.0	14.4	Shower		
58	52.6+5.2	56859.75882	-32.4	102.1	<1.3	Track		
59	$124.6^{+11.6}_{-11.7}$	56922.58530	-3.9	63.3	8.8	Shower		
60	93.0 ^{+12.9} -11.7	56931.93110	-37.9	32.7	13.3	Shower		
61	53.8 +7.2	56970.20736	-16.5	55.6	<1.2	Track		
62	75.8+6.7	56987.77219	13.3	187.9	<1.3	Track		
63	97.4 ^{+9.6} -9.6	57000.14311	6.5	160.0	<1.2	Track		
64	70.8 +8.1	57036.74378	-27.3	144.5	10.6	Shower		
65	$43.3^{+5.9}_{-5.2}$	57051.66378	-33.5	72.8	17.5	Shower		
66	$84.2^{+10.7}_{-9.9}$	57053.12727	38.3	128.7	18.3	Shower		
67	$165.7^{+16.5}_{-15.5}$	57079.96532	3.0	335.7	7.0	Shower		
68	$59.1^{+8.0}_{-6.0}$	57081.53526	-15.7	294.3	11.7	Shower		
69	$18.0^{+2.2}_{-2.0}$	57133.79007	0.3	236.2	15.7	Shower		
70	98.8+12.0	57134.39812	-33.5	93.9	12.3	Shower		
71	$73.5^{+10.0}_{-10.5}$	57140.47276	-20.8	80.7	<1.2	Track		
72	$35.3^{+4.6}_{-4.1}$	57144.29607	28.3	203.2	19.5	Shower		
73	$26.2^{+2.6}_{-2.3}$	57154.83679	11.1	278.4	6.9	Shower		
74	$71.3^{+9.1}_{-8.1}$	57157.00077	-0.9	341.0	12.7	Shower		
75	$164.0^{+20.7}_{-21.4}$	57168.40450	70.5	259.0	13.1	Shower		
76	$126.3^{+12.0}_{-12.7}$	57276.56530	-0.4	240.2	<1.2	Track		
77	$39.5^{+3.8}_{-3.7}$	57285.01732	2.1	278.4	7.2	Shower		
78	$56.7^{+7.0}_{-6.9}$	57363.44233	7.5	0.4	<1.2	Track		
79	$158.2^{+20.3}_{-19.8}$	57365.75249	-11.1	24.6	14.6	Shower		
80	$85.6^{+11.1}_{-10.6}$	57386.35877	-3.6	146.6	16.1	Shower		
81	$151.8^{+13.9}_{-21.6}$	57480.64736	-79.4	45.0	13.5	Shower		
82	$159.3^{+15.5}_{-15.3}$	57505.24482	9.4	240.9	<1.2	Track		

IceCube Alert Streams

- Upgrade in 2019: Bronze/Gold alert streams (30%/50% astrophysical probability)
- Publicly distributed via AMON/GCN => follow-up observations by all IACTs
- Aim: identify a plausible EM counterpart to the neutrino event

F.Schussler et al, Moriond, VHEPU (2022)

IceCube alert streams (I): Gamma-ray follow-up ("GFU")

- Searches for neutrino multiplets ("flares") in the IC online data stream
 - Time periods ranging from seconds to 180days
- Predefined targets + all-sky search (in preparation)
- Alerts distributed privately under MoU
 - Northern Sky: MAGIC & VERITAS since 2012
 - Southern Sky: H.E.S.S. since 2019
- Source selection based on 3LAC/3FHL/TeVCat; variability; distance; visibility
- Aim: determine the state of the source (quiescence vs flaring state; spectral changes)

Since October 2024, Icecube will discontinue private alerts and make all of them public Discussion ongoing on preparing new source list (E. Bernardini, S. Mangano, C.Bosco Mengelo, PM and others)

Which events can be ToO for EM telescopes ?

Gamma-ray FoVs and IceCube events

Only muon "track" events can be used in the follow-up observations given the IACTs' field-of-view

The Story of EHE IC-170922A and a Blazar

Several other observatories were also alerted

The Story of EHE IC-170922A and a Blazar

			ICECUBE
side view		Flurry of	Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the lceCube-170922A error region. ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10;10 UT
		ATELs in next days	Further Swift-XRT observations of IceCube 170922A ATel #10792; P. A. Evans (U. Leicester) A. Kelvani (PSU), J. A. Kennea (PSU), D. B. Fox (PSU), D. F. Cowen (PSU), J. P. Osborne (U. Leicester), and F. E. Marshall (GSFC) report on behalf of the Swift-IceCube collaboration: on 28 Sep 2017; 11:57 UT Credential Certification: Phil Evans (pae9@starle.ac.nk)
top view.	o 500 1000 1500 2000 2500 3000 125m	-	ASAS-SN optical light-curve of blazar TXS 0506+056, located inside the IceCube-170922A error region, shows increased optical activity
NOTICE_DATE:	Fri 22 Sep 17 20:55:1	3 UT	'anckowiak (DESY), K. Z. Stanek, C. S. Kochanek, T. A. Thompson L. Holoien, B. J. Shappee (Carnegie Observatories), J. L. Prieto
NOTICE_TYPE:	AMON ICECUBE EHE		(Diego Portales; MAS), Subo Dong (KIAA-PKU)
RUN_NUM:	130033		irmation of gamma-ray activity from the
EVENT_NUM:	50579430		ceCube-170922A error region
SRC_RA:	77.2853d {+05h 09m 0	8s} (J2000),	selli (SSDC/ASI and INAF/OAR), G. Piano (INAF/IAPS), C.
	77.5221d {+05h 10m 0	5s} (current),	tection of VHE gamma rays by MAGIC from
	76.6176d {+05h 06m 2	8s} (1950)	consistent with the recent EHE neutrino
SRC_DEC:	+5.7517d {+05d 45' 0	6"} (J2000),	event IceCube-170922A
	+5.7732d {+05d 46' 2	4"} (current),	1817; Razmik Mirzoyan for the MAGIC Collaboration
	+5.6888d (+05d 41' 2)	0"} (1950)	wift XRT and NuSTAR Observations of TXS
SRC_ERROR:	14.99 [arcmin radius,	stat+sys, 50% containme	ent] 0506+056
DISCOVERI_DATE:	10010 100; 200 001;	17/09/22 (yy/mm/dd)	B. Fox (PSU), J. J. DeLaunay (PSU), A. Keivani (PSU), P. A. Evans
DISCOVERY_TIME:	75270 SOD {20:54:30.4	3} UT	, C. F. Turley (PSU), J. A. Kennea (PSU), D. F. Cowen (PSU), J. P. (U. Leicester), M. Santander (UA) & F. R. Marshall (GSFC)
REVISION:	0		GSC observations of IceCube-170922A and TXS
N_EVENTS:	1 [number of neutrino:	s]	0506+056
STREAM:	2		i; H. Negoro (Nikon U.), S. Ueno, H. Tomida, M. Ishikawa, Y. Sugawara,
DELTA T:	0.0000 [sec]	Tanaka nainted out the	 Shimomukai (JARA), T. Mihara, M. Sugizaki, S. Nakahira, W. Iwakiri, Isu, F. Yatabe, T. Takao, M. Matsuoka (RIKEN), N. Kawai, S. Sugita, T. Tachiban, S. Hasing, K. Matsuoka (Tachi A. Kawai, S. Sugita, T.
SIGMA T:	0.0000e+00 [dn]	. Tunaka pointea out tha	Y. Kawakubo, Y. Kitaoka, T. Hazhimoto (AGU), H. Tsunnai, T. Sakamolo, Y. Kawakubo, Y. Kitaoka, T. Hazhimoto (AGU), H. Tsunnai, T. Yoneyama
ENERGY :	1.1998e+02 [TeV]	(ANATA object consistent	A Radio Observations of the blazar TXS 0506+056
SIGNALNESS:	5.6507e-01 [dn]		sociated with the IceCube-170922A neutrino event
CHARGE :	5784.9552 [pe]	ieutrino was a Fermi-LAI	DIOZOTS (10861; A. J. Tetarenko, G. R. Sivahoff (UAlberta), A. E. Kimbali (NRAO), and J. C.A. Miller-Jonez (Cartin-ICRAR)

Follow up observations confirm detection by others

VERITAS: 35 h collected between Sep 23rd – Feb 6th → detection > 100 GeV

Fermi-LAT, MAGIC and others find a flaring blazar

IceCube, Fermi-LAT and MAGIC events came from the direction of a source TXS0506+056, a blazar

Redshift ~ 0.34 Distance ~ 1.75 Gpc (5.7 billion light-years)

Chance coincidence prob. estimated through a Likelihood ratio test

$$\mathcal{L} = \prod_{i}^{N} \left(\frac{n_s}{N} \mathcal{S} + (1 - \frac{n_s}{N}) \mathcal{B} \right)$$

 $\mathcal{S}(\vec{x},t) = \sum_{s} \frac{1}{2\pi\sigma^2} e^{-|\vec{x}_s - \vec{x}|^2 / (2\sigma^2)} w_s(t) w_{\rm acc}(\theta_s)$

Fluctuation disfavoured at 3 sigma

Energy of the neutrino ~ 290 TeV, 90% CL lower limit ~ 183 TeV Upper limit of 4.5 PeV, depends on the assumed spectrum

IceCube trigger to MAGIC (IC-170922A) and other observatories since 24th September 2017

The IceCube Collaboration et al., Science 361, 146 (2018)

Spectral Shapes in HE and VHE

Observations in Radio, X-rays, optical

The Karl G. Jansky Very Large Array (VLA) (37) observed TXS 0506+056 starting 2 weeks after the alert in several radio bands from 2 to 12 GHz (38), detecting significant radio flux variability

TXS 0506+056 was detected significantly in all bands/epochs.

Marginal spectral variations In X-rays seen, When compared with historical flux, an enhancement of flux also reported

Redshift measurement using Gran Telescopio Canarias, Paiano et al, ApJL (2018)

OVRO 40m Telescope (15 GHz)

IceCube, Fermi-LAT and MAGIC events came from the direction of a distant blazar TXS0506+056

Explosion of theoretical papers in the archive in the next days

Modelling the Spectral Energy Distributions

S.Gao et al, Nature Astronomy (2019), MAGIC Collaboration , ApJL (2018) Sunanda, R.Moharana and PM (2022)

Something more interesting from IceCube

A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by this association, we investigated 9.5 years of IceCube neutrino observations to search for excess emission at the position of the blazar. We found an excess of high-energy neutrino events, with respect to atmospheric backgrounds, at that position between September 2014 and March 2015. Allowing for time-variable flux, this constitutes 3.5σ evidence for neutrino emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring episode. This suggests that blazars are identifiable sources of the high-energy astrophysical neutrino flux.

$$\mathcal{S}_i = \frac{1}{2\pi\sigma_i^2} e^{-\frac{r_i^2}{2\sigma_i^2}} \times \mathcal{E}(\mathbf{E}_i|\gamma) \times \frac{1}{\sqrt{2\pi\sigma_{\mathrm{T}}}} e^{-\frac{(\mathbf{T}_i - \mathbf{T}_0)^2}{2\sigma_{\mathrm{T}}^2}}$$

IceCube Collaboration, Science 361, 147-151 (2018)

Neutrino and Gamma-ray Light curve/Spectrum

Some more Neutrino-blazar coincidence story

- IceCube-190730A, another very-high-energy neutrino (GCN Circular # 25225, ATel #12967), Coincident with blazar PKS 1502+106 (4FGL J1504.4+1029 and 3FHL): 0.31°offset, within 50% CL region of neutrino, FSRQ at z=1.84
- OVRO 40m telescope: a 15 GHz flare started 5 years ago and now reaching all-time high 4 Jy (similar to TXS 0506+056)
- Models predict a substantial neutrino flux that is correlated with the gamma-ray and soft X-ray fluxes (Rodriguez et al, ApJ 912(2021))
- There were a few others in the last 2-3 years, however not very significant detections in other wavelengths.
- BZB J0955+3551, observed coincident with IC-200107A, X-ray flare in NuStar and NICER, however, probably not connected to neutrino emission (Paliya et al, ApJ 902 (2020))

PKS 0735 + 178 (z = 0.45) associated with IC-211208A ? Source lies about 2.2 deg from the IceCube best fit position Baksan, KM3Net also reported detection of high energy neutrinos

and H.E.S.S.

Broad Band SED modelling

R.Prince, S.Das, N.Gupta, PM, C. Bozena Published in MNRAS (2024)

Neutrino energy of 0.1 PeV Contraints from cascade emission in X-rays

Search for coincident sub-threshold events in HAWC and IceCube

Temporal selection requiring IceCube events to come within the transit time of HAWC hotspot.

A statistic to rank the coincident events (Fischer's method)

Overlap of spatial uncertainties estimated through a Maxm Likelihood method

Two coincident events found

HAWC and IceCube Collaboration,

THE ASTROPHYSICAL JOURNAL, 906:63 (10pp), 2021 January 1

Search for neutrinos in hard X-ray AGNs

Environments in which neutrinos can escape But gamma rays interact with low energy photons to cascade to lower energies.

BASS catalog, stacked search and individual source search

NGC1068 and NGC 4151 are 2 significant sources. (however hidden in gamma rays) Stacking analysis of non-blazar AGN show no significant emission

Where is the growing evidence for blazar connection ?

Fermi catalogs and 3HSP catalog sources in IceCube error regions (90%). 94 track like events studied

Find number of sources lying inside error-box of IceCube and compare with randomised samples

29 sources from HSP catalog (no gamma-ray counterpart) at 2.79 sigma excess

Construct MWL SEDs using VOU-Blazars software package (using a much larger set of catalog)

About 20 gamma-ray blazars in IceCube 90% error region : Post trial p-value: $6.2 \times 10-4$ (3.23 σ)

Growing consensus that blazars are counterparts of a fraction of IceCube neutrinos

P. Giommi et al, MNRAS 497 (2020) 1, 865-878

More recent news on neutrinos and gamma rays

Non simultaneous Multifrequency Observations

Adopting a distance of 14.4 Mpc, the neutrino luminosity is about 1.5 higher than that of the gamma-ray luminosity as determined from Fermi.

More news on gamma rays and neutrinos

High energy Neutrino detection to Gamma-Neutrino Astronomy

KM3Net

Partial array of CTA telescopes ready by 2026 at La Palma, CDR of LST completed

IceCube-Gen2, Extension of IceCube (currently stalled)

ToOs with Astrosat, optical telescopes in India

Conclusions

Blazars are plausible sources of very high energy cosmic rays beyond several tens of PeV : 10^(15) to 10^(17) eV Definitely not (yet) UHECRs

Detection of a blazar in flaring state in gamma rays in connection with a HE neutrino event raises more questions than it answers : Are they happenning only during flares ? What about temporal correlation ???

We are having quite a few multimessenger SEDs to play with

We need many more such events : in the last years we have been performing regular em (MAGIC, HCT, ARIES, Astrosat, Swift etc) observations of high energy neutrino events : Requires Tighter cooperation between observatories : Future is very bright with CTA, KM3NeT and other em observatories Backup Slides

Modelling the Spectral Energy Distribution

A one-zone model with external photons can explain both the low and high state of the source , MAGIC Collab, ApJL (2018)

Detailed modelling to explain the Multimessenger connection

Photo-meson induced cascades, Bethe-Heitler pair cascades, synchrotron from protons and muons

Synchrotron from electrons, SSC, EC

Maximum proton energy $\sim 10^{(16)} \text{ eV}$

Recent News

ATel #	16317: Fermi-LAT gamma-	-ray observations of IceCube-2310)27A — Mozilla Firefox			hp -	¥ (S)	((i·	En	())	12:37	ам 🔱
Ø	💩 Home : Saha Institute o	of 🗙 🛛 📷 Summary from TRANS m	× \Lambda ATel #16317: Fermi-LAT >	< +								
	← → ⊂ ଢ	🛛 🔒 https://www.astronomers	telegram.org/?read=16317	⊠ ☆	Q Search			Ŧ	\		0	• =
	🗘 Most Visited 🧕 Gettir	ng Started								Othe	r Book	kmarks
	Fermi-LAT g ATel #16317; S. Buson (U	[Previous] Jamma-ray observation 231027A Jni Wuerzburg), S. Garrappa (Weizr	s of IceCube-									
	C. Bartolini (INFN E Credential C	Bari) and J. Sinapius (DESY) on bel collaboration on 3 Nov 2023; 09:06 UT Certification: Sara Buson (sara.buson	half of the Fermi-LAT @gmail.com)									
2	Subjects: Gamma Ray, Neutrinos, Request for Observations, AGN, Blazar											
	We report an analysis of observations of the vicinity of the IC231027A high-energy neutrino event (GCN 34891) with all-sky survey data from the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope. The IceCube event was detected on 2023-10-27 at 04:16:10.44 UT (T0) with J2000 position RA = 267.16 (+3.35, -3.40) deg, Decl. = +46.96 (+2.25, -2.88) deg (90% PSF containment). According to the fourth Fermi LAT source catalog (4FGL-DR4), there are eight 4FGL-DR4 cataloged gamma-ray (>100 MeV; The Fermi-LAT collaboration 2022, ApJS, 260, 53) sources in the 90% IC231027A uncertainty localization region.											
	We searched for intermedi source. Preliminary analys 100 MeV) at the IC231027 index = 2.0 fixed) for a poin upper limit (95% confidence 2023-10-27 UTC), and < 5	iate (days to years) timescale emissions sis indicates no significant (> 5 sigma) 7A best-fit position. Assuming a powe int source at the IC231027A best-fit po ce) is < 7.0e-10 ph cm^-2 s^-1 for a 1 5.2e-9 (< 1.4e-7) ph cm^-2 s^-1 for a 1	on from a new gamma-ray) new excess emission (> r-law spectrum (photon osition, the >100 MeV flux 5-years (2008-08-04 to 1-month (1-day) integration									

Continued searches for additional correlations

MAGIC detection of the flaring blazar

A low energy threshold Coupled with high sensitivity is essential for detection of high redshift sources.

- H.E.S.S: fastest follow-up (~4 h delay), total 3.25 h/ 3 nights → no detection> 175 GeV
- VERITAS: first obs. ~12 h delay, total 5.5 h/ 3 nights → no detection > 175 GeV
- MAGIC: first obs. ~32 h delay (Sep 24th), 3.5h, weather non-optimal
 - \rightarrow Ih used for UL

Sep 28th - Oct 4th: 13h collected/1 week → detection > 90 GeV! (Oct 3rd:ATel#108]7)

MAGIC Telescopes (50 GeV-50 TeV)

- Low Energy threshold (~ 50 GeV), good overlap with Fermi.
- Most suited for high red-shift source observations with high sensitivity
- Fast movement to catch transients

 Operational since 2003
 2 x 17 mt telescope in stereo mode since 2009
 < 1% of Crab nebula flux
 You can see TeV gamma rays from Crab nebula with MAGIC in < 2 mins
 Operate in moderate moonlight High Energy Photon / Neutrino Production in Cosmic Ray sites

 $\begin{array}{ll} p + \gamma \to p + \pi^{0}, & \pi^{0} \to \gamma\gamma, & e + \gamma \to e + \gamma \\ p + \gamma \to n + \pi^{+}, & \pi^{+} \to \mu^{+}\nu_{\mu} \to e^{+}\nu_{e}\bar{\nu_{\mu}}\nu_{\mu} \\ p_{\rm CR} \, p_{\rm ISM} \to p \, p \, n\pi \,, \\ \pi \to \gamma \,, \, \nu \end{array}$

TeV γ s can come from protons (thru π^0 decay) or from electrons (thru Inverse Compton)

But Tev ν s can come only from proton interactions.

 γ s and ν s : Messangers from the cosmic accelerators. But Universe opaque to multi-TeV photons from distant extragalactic sources.

 ν 's are the ultimate messangers from the highest energy accelerators at cosmic distance scales.

The pion takes on average 1/5th of proton's energy, and each neutrino takes about 1/4th of the pion energy. Thus the maximum neutrino energy is about 1/20th of the maximum proton energy.

Maximum Energy and Possible Sites

Maximum Energy:

In general, Larmor confinement \Rightarrow

$$r_g = 1.1 \left(\frac{E}{10^{18} \,\mathrm{eV}}\right) \left(\frac{10^{-6} \,\mathrm{G}}{B_{\perp}}\right) Z^{-1} \,\mathrm{kpc}$$
$$\Rightarrow E_{\max} \lesssim 0.5 B_{\mu} \,\mathrm{G} L \,\mathrm{kpc} Z \,\mathrm{EeV}$$

 $L \ge 2r_g = 2\frac{E}{ZeB}$

 $E_{\max} = \beta B_{\mu \, G} L_{\, kpc} Z \, EeV \ (\beta \le 1)$

Gamma ray bursts, Active Galactic Nuclei, Clusters of Galaxies seem to be the best candidates for Very High Energy Cosmic rays

==>

Primarily sources which are extragalactic

Event Topologies in IceCube

CC Muon Neutrino

 $\nu_{\mu} + N \to \mu + X$

track (data)

factor of ≈ 2 energy resolution < 1° angular resolution

Neutral Current / Electron Neutrino

 $\begin{aligned}
 \nu_{\mathrm{e}} + N &\to \mathrm{e}^{-} + X \\
 \nu_{\mathrm{x}} + N &\to \nu_{\mathrm{x}} + X \\
 \text{cascade (data)}
 \end{aligned}$

≈ ±15% energy resolution
 ≈ 10° angular resolution
 (at energies ≥ 100 TeV)

CC Tau Neutrino

$\nu_{\tau} + N \to \tau + X$

"double-bang" and other signatures (simulation)

(not observed yet).

Figure S1: Neutrino effective area for the through-going track alert channel. Effective area for the online through-going track ("EHE") selection in three zenith angle ranges. The zenith angle of IceCube-170922A was $\cos(\text{zenith}) = -0.1$, a preferred direction for this event selection. In the range -0.55 to -0.45 (~30 deg below the horizon) a strong absorption by the Earth at the highest neutrino energies is seen, while in the interval 0.25 to 0.35 (~20 deg above the horizon) strong cuts on track energy are needed to suppress the background from cosmic-ray muons, limiting sensitivity below 1 PeV. The most probable neutrino energy of 290 TeV is also

Neutrino Blazar Coincidence

Perform several hypothesis tests based on spatial and temporal signal distribution and neutrino emission scenarios

For each hypothesis, create a TS in a likelihood ratio test to compare signal hypothesis to null hypothesis

Null hypothesis assumes no correlation between gamma ray sources (catalog) and neutrino events

$$\mathcal{L} = \prod_{i}^{N} \left(\frac{n_{s}}{N} \mathcal{S} + (1 - \frac{n_{s}}{N}) \mathcal{B} \right)$$

$$\mathcal{S}(\vec{x}, t) = \sum_{s} \frac{1}{2\pi\sigma^{2}} e^{-|\vec{x}_{s} - \vec{x}|^{2}/(2\sigma^{2})} w_{s}(t) w_{acc}(\theta_{s}),$$
Maximise Likelihood w.r.t n_s and other free parameters
$$w_{s}(t) = \phi_{E}(t) = \int_{1 \text{ GeV}}^{100 \text{ GeV}} E_{\gamma} \frac{d\phi_{\gamma}(t)}{dE_{\gamma}} dE_{\gamma}$$

10

15

20

25

After trials reduces to 3 sigma

Multi-messenger Astrophysical Neutrino Signals

~4 EHE muon neutrino events (~2 astrophysical). 0.1° - 0.4°.