Exotic Tetraquark in $cc\bar{q}_1\bar{q}_2$ channel

Tanishk Shrimal

The Institute of Mathematical Sciences, Chennai HBNI, Mumbai

Trends in Astroparticle and Particle Physics

September 26, 2024

Collaborators: Sara Collins, M. Padmanath, Sasa Prelovsek

Quantum Chromodynamics

 ${\cal L}_{QCD} = \sum_{i}^{N_f} ar{q}_i \, (D_\mu \gamma^\mu + m_i) q_i - rac{1}{4 q_e^2} G_{\mu
u} G^{\mu
u}$

where,
$$D_{\mu} = \partial_{\mu} - i {oldsymbol{g}}_{s} \sum_{i=1}^{8} \lambda^{a} A_{a\mu}$$

$$G_{\mu
u} = [D_\mu, D_
u]$$

JRJC 2017

Fernando Romero-López Lattice Practices 2024

The QCD coupling

Perturbative approaches fail in the hadronic regime.

Nonperturbative approaches required for first principles investigation: Lattice QCD

Tanishk Shrimal (IMSc)

2/18

Hadrons

Composite subatomic particles made of quarks held together by the strong interaction.

We assume isospin symmetry and only strong interaction.

Tanishk Shrimal (IMSc)

Motivation

tetraquarks

Summary of LHC Discoveries

https://www.nikhef.nl/~pkoppenb/particles.html

Summary of Exotics Discovered

https://www.nikhef.nl/~pkoppenb/particles.html

- The LHCb collaboration discovered an exotic narrow resonance $T_{cc}^+(3875)$
- An isoscalar state with $J^P = 1^+$
- It is the longest lived exotic discovered till date.
- Many works on D^*D scattering including lattice calculations.

Phys. Rev. Lett. 129, 032002 (2022): First extraction of amplitude

 $Yield/(500 \, \text{keV}/c^2)$ 30 20R.Aaij et. al. 2021 10

3.87

The next potential candidate could be a tetraquark with flavor content

CCUS

Tanishk Shrimal (IMSc)

Motivation

2109.01038

Lattice QCD: theoretical aspects

- A non-perturbative, gauge invariant *regulator* for the QCD path integrals.
- Redefine the theory on a discretized Euclidean spacetime.
- The phase space is sampled using importance sampling procedures such as Markov Chain Monte Carlo algorithms.

Energies from Correlations

Spectral-Decomposition

$$egin{aligned} \mathcal{C}(t) &= \langle \hat{\phi}^{\dagger}(t) \hat{\phi}(0)
angle &= \sum_{n} \langle 0 | \hat{\phi}^{\dagger}(t) | n
angle \langle n | \hat{\phi}(0) | 0
angle \ &= \sum_{n} \langle 0 | e^{i\mathcal{H}t} \hat{\phi}^{\dagger}(0) e^{-i\mathcal{H}t} | n
angle \langle n | \hat{\phi}(0) | n
angle \ &= \sum_{n} |\langle 0 | \hat{\phi}(0) | n
angle |^2 e^{-\mathcal{E}_n t} \end{aligned}$$

Ground State

$$\lim_{t o\infty} \mathcal{C}(t) = \mathcal{A}_{ heta} e^{-{\mathcal E}_{ heta} t}$$

Tanishk Shrimal (IMSc)

8/18

Beyond Ground State

Compute matrix of Euclidean correlations using a basis of operators with desired quantum numbers.

$${\cal C}_{ij}(t) = \langle \hat{\phi_i}(t) \hat{\phi_j^\dagger}(0)
angle = \sum_n e^{-{\cal E}_n t} \langle 0 | \hat{\phi_i}
angle$$

Variationally determine the optimal linear combinations to describe the time evolution of excited states.

Variational procedure (Generalised EigenValue Problem)

Adjoint sources in lattice gauge theory C. Michael (1985)

How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation

Martin Lüscher, Ulli Wolff^{ab}

Tanishk Shrimal (IMSc)

Lattice QCD and Spectroscopy

 $\langle (0)|n\rangle\langle n|\hat{\phi}_{j}^{\dagger}(0)|0\rangle$

Nuclear Physics B Volume 339, Issue 1, 23 July 1990, Pages 222-252

9/18

Finite-Volume Spectrum

- Positive shift w.r.t non-interacting level \implies repulsive interaction.
- Negative shift w.r.t non-interacting level \Rightarrow attractive interaction.

Tanishk Shrimal (IMSc)

Lattice QCD and Spectroscopy

10/18

Finite-volume spectrum at 280 MeV pion mass for T_{cc}

Phys. Rev. Lett. 129, 032002 (2022)

Tanishk Shrimal (IMSc)

Amplitude Analysis

11/18

Schematic picture for illustration. Should not be taken quantitatively

Tanishk Shrimal (IMSc)

Amplitude Analysis

11/18

Schematic picture for illustration. Should not be taken quantitatively

- In continuum for any physical scattering we have the following relation, $S=1+i(2
 ho^{rac{1}{2}}T
 ho^{rac{1}{2}}) ext{ where }
 ho_{l,a}=rac{2k_a}{E_{cm}}$
 - and from the K-matrix formalism we can write, $S = (1 + iK)(1 - iK)^{-1}$

from which one could write,

$$T^{-1}=rac{2 ilde{K}^{-1}}{E_{cm}}-i
ho$$
 where, $ilde{K}^{-1}_{l'a;,la}=k^{l+1}_{a'}$

• The infinite-volume physics can be extracted from the finite-volume spectra following the Lüscher's two-particle prescription for the finitevolume.

Determinant over angular $\det[ilde{K}(s)^{-1} - B(\mathbf{P},L)] = 0$ momenta and channel space

Lüscher[1991]

Tanishk Shrimal (IMSc)

Amplitude Analysis

 $k_{l'a}^{-\frac{1}{2}}K_{l'a}^{-1}k_{a}^{l'+\frac{1}{2}}$

Related to Infinite-volume scattering amplitudes

Known mathematical functions of energy and volume

For generalizations of Lüscher's framework, c.f. Briceño, Hansen 2014-15

Tanishk Shrimal (IMSc)

Amplitude Analysis

13/18

Lüscher[1991]

For generalizations of Lüscher's framework, c.f. Briceño, Hansen 2014-15

Tanishk Shrimal (IMSc)

Amplitude Analysis

13/18

Lüscher[1991]

For generalizations of Lüscher's framework, c.f. Briceño, Hansen 2014-15

Tanishk Shrimal (IMSc)

Amplitude Analysis

13/18

Lüscher[1991]

For generalizations of Lüscher's framework, c.f. Briceño, Hansen 2014-15

Tanishk Shrimal (IMSc)

Amplitude Analysis

13/18

Lüscher[1991]

- Once the infinite-volume scattering matrix is extracted, various physical quantities can be extracted from that amplitude.
- Employing these techniques, the first lattice calculation for T_{cc} was performed at 280 MeV pion mass in reference :

Signature of a Doubly Charm Tetraquark Pole in DD* Scattering on the Lattice

Phys. Rev. Lett. 129, 032002 - Published 12 July 2022

• The authors identified a pole singularity in the amplitude, linked to the physical state observed in experiments. They examined various **Riemann sheets associated with the unitary branch cut.**

But can we predict existence of any such solutions (T_{ccus}) in the $cc\bar{u}\bar{s}$ quark configuration?

Tanishk Shrimal (IMSc)

Amplitude Analysis

T_{cc} as a pole in DD^* amplitude

Tanishk Shrimal (IMSc)

Amplitude Analysis

15/18

$D^{(*)}D_s^{(*)}$ Spectrum

- Relatively difficult system: multiple final state two-meson configurations possible.
- Potential mixture of attractive and repulsive interactions observed.
- Further complications from coupled channel scattering amplitudes.

Tccus Tetraquark

16/18

 $DD_s^* - D^*D_s$ Amplitude

This is an ongoing analysis and the analytic structure of the scattering amplitude across complex energy plane is being investigated.

Tccus Tetraquark

Sheet 2 [-1,1]

Sheet 4 [1,-1]

- There's a lot of experimental activity going on, and exciting news of hadron discoveries keeps us motivated and active.
- Lattice QCD is the one of the powerful non-perturbative first principles approach for studying hadrons.

Prof. MVN Murthy **TAPP-2024**

Jonathan M. M. Hall, Waseem Kamleh, Derek B. Leinweber, Benjamin J. Menadue, Benjamin J. Owen, Anthony W. Thomas, and Ross D. Young Phys. Rev. Lett. 114, 132002 - Published 1 April 2015

- Various details on extracting finite-volume spectrum are discussed.
- Using Lüscher's prescription infinite-volume scattering amplitudes are determined from the finite-volume spectrum.
- Results for T_{cc} and for ongoing $D^{(*)}D_s^{(*)}$ scattering studies have been discussed.

Lattice QCD Evidence that the $\Lambda(1405)$ Resonance is an Antikaon-

Thank You