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• The solar neutrino problem was solved largely in part due to the  
Sudbury Neutrino Observatory (SNO) measurement of the  
Neutral Current neutrino-dissociation of deuteron: 

• Challenges for SNO-like detector: 

• Heavy water is expensive and unavailable 

• Low neutron capture efficiency 

• Large Threshold 

• Proton is undetected 

• No spectral information

ν + d → ν + p + n
n + d → 3H + γ

Remember SNO ?
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} Resolved if you 
 have a scintillator!

India can manufacture! 
https://www.hwb.gov.in/

Just add Gd

Remember SNO ?

50-100 more light compared to Cherenkov light 
= lower threshold (<1 MeV) 

+ better energy resolution (~3% at 10 MeV)  



Concept Drawing



Interactions and Detectables

ν, e±, p, n

Table : Neutrino deuteron interactions

} } }

Scintillator 
= low threshold

Thermalises and  
Captured! 

Can be used as a “tag”
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Secondary Interactions

• Final state protons lose energy quickly and travel ~0.1 mm  

• The neutrons undergo following secondary interactions: 

1. Elastic scattering ( ) 

2. Radiative capture (  ) 

3. Deuteron breakup (  ) 

• We compare the interactions rates ( ) to analytically 
examine the secondary interactions. 

n + A → n + A

n + A → A′ + γ

n + d → n + n + p

Γ = nσv
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Secondary Interactions
One can estimate the following:  

1.

2.

3. Without Gd,  

4. With Gd, 

NES = 1
log (5/9)

log ( T th
n

Tn ) ≈ 4 log10 ( Tn

T thn ) ≈ 30 − 35

Nno Gd
cap = ΓES(T th

n )
Γcap(T thn ) ≈ 3000

τcap ∼ 20 ms

τcap ∼ 50 μs
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This is the reason  
why we need Gd.
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Cross sections and differential cross sections obtained using Pionless EFT [nucl-th/0008032] are available at:  
https://github.com/bhvzchhn/NeutrinoDeuteron



• Solar Neutrinos in the 2-5 MeV range 

• Day-Night Asymmetry of Solar Neutrinos 

• Unique Opportunities with Supernova Neutrinos 

• Other things that other scintillator detectors do … 

• New Ideas ???

Potential Science Case



AIM 1: Solar Neutrinos at DLS

• DLS will detect electron 
neutrinos (+ all other flavors) 

• Approximately 6% precision 
in survival probability with 1 
kton-yr 

• Can be a stringent test of the 
LMA-MSW solution 

• May be a way to discover non-
standard interactions and 
other exotic effects

Unique opportunity



• At night neutrinos can cross the core 

• Many Indian locations see substantial day-night effect 

• The effect reverses sign at lower energies

AIM 2: Day-Night Asymmetry

We have geographical advantage + low threshold



• Stars with mass > 8-10 x Sun 
explode as a supernova 

• ~99% of the energy released is 
through neutrinos in ~ 10secs 

• In our galaxy 1-3 / 100 yr. The 
last one was ~ 1900 
(G1.9+0.3) but not seen due 
to dust. In 1987 a SN seen 
optically in nearby galaxy and 
also through neutrinos.

Supernova Neutrinos



Neutral Current
Neutron tag is possible unlike in usual scintillator! 

High (Low) Fluence: 84 (50) proton above 200 keV

AIM 3: All Flavor Spectrum for SN 
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Detecting scintillation from NC channel has two issues : 

1. Small momentum transfer to proton 

2. Photosaturation losses / Quenching

Neutral Current
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Technical Capabilities Needed
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How does DLS stack up against other detectors?
Neutral Current

Spectrum ~  “Can reconstruct incident neutrino spectrum” 

Tagging ~ “Multiple detectable particles in the final state” 



How does DLS stack up against other detectors?

Charged Current



Summary

• Solar Neutrinos in the 2-5 MeV range 

• Day-Night Asymmetry of Solar Neutrinos 

• Unique Opportunities with Supernova Neutrinos 

• Other things that other scintillator detectors do … 

• New Ideas ???


