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What is everything made of?

Dark Matter

Image credit: Planck/ESA 4
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Primordial Black Holes 101

* Black Holes formed in the early universe from the collapse of high matter-overdensities.

- The same overdensities that form galaxies at larger scales, being not as high.

* Many mechanisms for their production exist in literature.

- Including some that don’t rely on the canonical overdensities produced by inflation.
* They can be formed having a wide range of masses.

* They can be formed with non-zero spins also.
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Primordial Black Holes 102

* PBHs would be non-relativistically moving today.
* They would hardly interact with baryons except through gravitation.
* They can be stable over cosmological timescales.

* Do not contribute to the baryonic matter density.
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Primordial Black Holes 102

* PBHs would be non-relativistically moving today.
* They would hardly interact with baryons except through gravitation.
* They can be stable over cosmological timescales.

* Do not contribute to the baryonic matter density.

Smells like Dark Matter?
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Primordial Black Holes 102

* PBHs would be non-relativistically moving today.
* They would hardly interact with baryons except through gravitation.
* They can be stable over cosmological timescales.

* Do not contribute to the baryonic matter density.

Smells like Dark Matter?

e Can form in the right abundance to constitute dark matter completely/significantly!
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Hawking tell us that Black Holes have temperature
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Hawking evaporation of Black Holes

BHs are near-blackbodies. _

The spectrum of Hawking radiation by non-spinning

black holes is given by:
2 (Graybody factors.
d Nz’,lm B 1 Fsilm(E,M raybody factors.
dtdE 27 eB/T — (— 1 ) 284 Encode deviation
Graybody factors have to be calculated numerically. from blackbody
We use the code BlackHawk v2.0. Qpectrum. Y,

The spectrum is different for spinning BHs, which is

also computed using BlackHawk v2.0. "
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What Hawking radiation does to IGM’s temperature

* Exotic energy injection changes temperature and ionization history of
the IGM.

* Only the photons and electrons/positrons injected in the IGM are
important to consider.

* Injected particles don’t deposit energy instantaneously, but cool over
cosmological timescales.

11



Abhijeet Singh Indian Institute of Science, Bengaluru

What Hawking radiation does to IGM’s temperature

The following differential equations have to be solved simultaneously:
T _ T(O) 4+ Tinj 4 Tre
g = QJ(O) 4+ jjinj 4+ qre

where T' is Temperature, and x is the ionization fraction of
hydrogen nHﬂ/nH.

We solve these equations using the code DarkHistory.

12
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Lyman-« Transition
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Image credit: Wikipedia 90
https://en.wikipedia.org/wiki/Lyman-alpha
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Lyman-« Forest

Width of the absorption features
contains information of temperature

Image credit: https://astro.ucla.edu/~wright/Lyman-alpha-forest.html ]_3
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Lyman-« Forest
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—— No PBH, with ‘photoheating’ model Walther et al.(1808.04367)(discarded)
—— PBH, with ‘photoheating’ model Boera et al.(1809.06980)
- L40N2048 DEFAULT (Puchwein + 2019) Boera et al.(1809.06980)(discarded)
Haardt + 2012 Gaikwad et al.(2001.10018)
¢  Walther et al.(1808.04367)

Saha, AS, Parashari,
Laha

https://arxiv.org/abs/
2409.10617
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Saha, AS, Parashari,
Laha

https://arxiv.org/abs/
2409.10617

I Conservative model (our work)
Il Photoheating model (our work)
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Saha, AS, Parashari,
Laha

https://arxiv.org/abs/
2409.10617
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Summary See the paper

Black Holes formed early in the universe, a.k.a
Primordial Black Holes can constitute all/part of Dark
matter.

Hawking evaporation of light PBHs can lead to direct
and indirect observable consequences, providing a
way to constrain these beasts.

Hawking evaﬁoration spectrum utilized to calculate
its effect on the evolution of Inter-galactic medium’s
temperature.

The temperature of the IGM has been measured at
some redshifts using the Lyman-« spectroscopy.

By comparing the calculated temperature evolution of  https:/arxiv.org/abs/2409.10617
IGM assuming evaporating PBHs’ existence with the
measured temperatue values leads to upper limits on

fraction of Dark Matter in the form of PBHs. "
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Pandora’s Box

Image generated using Google Gemini
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Contents

* Dark Matter: Introduction, Evidence, Properties

* Primordial Black Holes: Introduction

* Hawking evaporation- A poor man’s derivation

* Properties of Hawking radiation and its sources

* Effect of Hawking radiation on IGM-temperature

e Measuring IGM’s temperature from Lyman-a forest

* Resulting constraints on Primordial Black Holes’ existence
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Evidence for Dark Matter

Galaxies can’t be rotating the way they do without Dark Matter.

GM(r)

r

Video credit: CAASTRO YouTube channel 22
https://www.youtube.com/watch?v=ywllcRBEZPI
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Evidence for Dark Matter

Mass distribution after clusters collide isn’t accounted for by visible matter.

Video credit: CAASTRO YouTube channel 23
https://www.youtube.com/watch?v=6itfq4CzxZ8
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Evidence for Dark Matter

Structure Formation doesn’t work without Dark Matter.

Data visualisation of the Planck CMB data
Credit: ESA Planck

Video credit: Dr. Becky YouTube channel Video credit: SpaceSciNewsroom YouTube channel 24
https://www.youtube.com/watch?v=SDRNvhbrz3k https://www.youtube.com/watch?v=eDGtFRj4xXc
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What do we know about Dark Matter?

* Is 5 times more abundant than the baryonic matter.

* Hardly interacts with the baryonic matter- dark.

* Is non-relativistic at the present epoch.

e Stable over the time-scale of the age of the universe.

* Does not contribute to the baryonic matter density.

25
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What do we know about Dark Matter?

* Is 5 times more abundant than the baryonic matter.

* Hardly interacts with the baryonic matter- dark.

* Is non-relativistic at the present epoch.

e Stable over the time-scale of the age of the universe.

* Does not contribute to the baryonic matter density.

Everyting in this list is inferred using gravitational interaction of Dark Matter.

26
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What do we know about Dark Matter?

Dark Matter Lightens Up

What are the particles that make up dark matter? As searches for WIMPs and axions come up empty, physicists are now
hunting for less massive, arguably less well-motivated versions of those candidates.

10°% PRIMORDIAL BLACK HOLES
Mass in electron volts (eV) o ;

T A left-field possibility: Dark

matter might be black
ULTRALIGHT DARK MATTER ! holes created during the

. Big Bang — concentrations

Like axions but potentially . of ordinary matter so
far more lightweight, these 10712 e : dense they trap light.
particles could comprise .
dark matter without 5
solving the strong CP Profon = . WIMPs
problem, a puzzle about e - .

the force that binds 10°° The erstwhile favorite

subatomic particles flecton = candidates, weakly
together interacting massive particles
jibe with a theory called
. . supersymmetry, but they're
Image credit: Quanta magazine 10
9 Q 9 AXIONS 107 almost ruled out.

These wispy, wavelike
particles are appealing
because they would solve
the strong CP problem.

LIGHT DARK MATTER

Dark matter could consist

of a complicated family

of particles that are like

WIMPs but more lightweight. 27
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Observational constraints on PBHs
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Observational constraints on PBHs
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‘Deriving’ Hawking evaporation for Black Holes*

Two inertial frames:

Image credit: https://physics.stackexchange.com/questions/484936/special-relativity-reference-frames-s-and-s

From our perspective:

—

x(t) = vt

In terms of time on clock
carried by S’:

t(T) =T
x(7) = yuT

Image credit: https://www.damtp.cam.ac.uk/user/tong/relativity/dynrel.pdf

* This derivation was taken from an article written by T. Padmanabhan in Resonance.

See https://link.springer.com/article/10.1007/s12045-008-0048-3
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‘Deriving’ Hawking evaporation for Black Holes

Consider a plane wave in our frame:

¢(x,1) = exp(—iw(t — z/c))

x(t) = vt

How does ¢(x,t) appear to S? In terms of time on clock

carried by S’:

Substitute ¢(7) and z(7) into ¢(x,t):

t(T) =T
. c—v _
exrp | —1wT x(7) = yuT
C+ v

Doppler shift! 39
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‘Deriving’ Hawking evaporation for Black Holes

If S’ is a uniformly accelerated frame: From our perspective:

Image credit:
https://physics.stackexchange.com/questions/484936/special-relativity-reference-frames-s-and-s

Image credit: https://www.damtp.cam.ac.uk/user/tong/relativity/dynrel.pdf 33
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‘Deriving’ Hawking evaporation for Black Holes

Parametrization in terms of 7: From our perspective:
C ct
t(t) = —sinh(at/c) \
a
c? N \
x(7) = —cosh(at/c)
a , ///

Image credit: https://www.damtp.cam.ac.uk/user/tong/relativity/dynrel.pdf 3 4
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‘Deriving’ Hawking evaporation for Black Holes

Parametrization in terms of 7 : How does the plane wave ¢(x,t) look to the
accelerated observer?

C

t(T) _ S?:nh(CLT/C) Substitute ¢(7) and x(7) into
: o(t)=exp(—iw(t—z/c))
62 One gets:
— = cosh .
x(7) —cos (aT/c) o <%€_m/c>
a

35
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‘Deriving’ Hawking evaporation for Black Holes

The frequency seen by the accelerated
observer is found by differentiating the
phase of the exponential w.r.t. 7 and
dividing by :

W' (1) = we /¢

The accelerated observer sees the
frequency being exponentially redshifted
as per its time!

How does the plane wave ¢(x,t) look to the
accelerated observer?

Substitute #(7) and z(7) into

¢(z,t)=exp(—iw(t—z/c))

One gets:

1WC
exp | —e
a

—aTt/c

36
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‘Deriving’ Hawking evaporation for Black Holes

The frequency seen by the accelerated To gain insight into the spectrum seen by the
observer is found by differentiating the accelerated observer, let’s Fourier expand it:
phase of the exponential w.r.t. 7 and

dividing by :

f0) = [ otmerar

W' (1) = we /¢

The accelerated observer sees the The integral is given by:
frequency being exponentially redshifted . B .
dS per its time! f(]/) _ EF 1V/C o ;Tal/cw_zya/c

a a

37
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‘Deriving’ Hawking evaporation for Black Holes

The power spectrum is given by:

1 B

;egl/—]_

The power spectrum is thermal in nature!

No trace of w in the power spectrum!

To gain insight into the spectrum seen by the
accelerated observer, let’s Fourier expand it:

f0) = [ otmerar

The integral is given by:

fv) = T [ =5 ) e T2 ivale
a a

38
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‘Deriving’ Hawking evaporation for Black Holes

The power spectrum is given by:

1 B

;egl/—]_

The power spectrum is thermal in nature!

No trace of w in the power spectrum!

Introducing Planck’s constant to convert v
into energy F,

e

b8 2mce
b L ah B

The temperature associated to the thermal
spectrum is given by:

ha

A—
2]€B7TC

39
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‘Deriving’ Hawking evaporation for Black Holes

T — ha Where are black holes in all this?
2k BTC

The accelerated observer associates a temperature to the spectrum observed by her!
This is the famous Unruh effect.

The temperature depends only on the acceleration of the observer. Particularly, the frequency of the
original plane wave is absent!

The spectrum was exponentially redshifting with time. Any exponentially redshifting spectrum will
have a temperature associated to it.

40
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‘Deriving’ Hawking evaporation for Black Holes

Recall, the Schwarzschild metric:

2GM dr?
ds® = (1 - gr > Pdt® — e ZGM) — r2(df? + sin0d¢>)
‘ AVAVAV m%
w(r) Woo
w(Te 1 — 252];4

w(r) \ 1 — 251

41
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‘Deriving’ Hawking evaporation for Black Holes

Recall, the Schwarzschild metric:

2GM dr?
ds® = (1 G > Pdt® — q ZGM) — r2(df? + sin0d¢>)
c4r — 2%
AVAVAVY /—\\,/’\\,/’\\,/53
w(re) w(r)

(Teate) (Tat)

42
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‘Deriving’ Hawking evaporation for Black Holes

(Tea te) (Ta t)

43
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‘Deriving’ Hawking evaporation for Black Holes

1_2GM

w(r) 1=

— C3 t Exponentially
w(r) = K(r)w(re)exp el — i(/%i(il:igir;t}ng spectrum!

44
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‘Deriving’ Hawking evaporation for Black Holes

( — 3t ) (—At) ) A c?
w OC eajp — eajp where —
esvi C 4G M

45
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‘Deriving’ Hawking evaporation for Black Holes
_Cgt — —At where A — C4
w P A4GM ) o C - AGM

ha
e T —
w(T) x e = Y

46
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‘Deriving’ Hawking evaporation for Black Holes

_Cgt — —At where A — C4
e S VTSIV e S ~4GM

ha
e T —
w(T) x e = Y
, _At/e 7 hA hc?
w( ) X e B QkBﬂ'C N 87TG]€BM

47
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‘Deriving’ Hawking evaporation for Black Holes

he? 1
€ T ox —

T —
SWGICBM M
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‘Deriving’ Hawking evaporation for Black Holes

hes 1
— T x —
87TG]€BM M

T

One can rigorously show
that emission of particles is
associated to this notion of
temperature.

49
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Properties of evaporating Black Holes

he? 1
€ T ox —

T —
SWGICBM M
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Properties of evaporating Black Holes

hes 1
— T x —
87TG]€BM M

T

What is the rate of mass loss (or energy injected)?

dM —1
— x —R*T*=-M*M"*=—
dt . E

Area x Temperature*

Age of a PBH with initial mass Mo (M,)?

52
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Properties of evaporating Black Holes

3 1
he T oo L

T —
SWGICBM M

What is the rate of mass loss (or energy injected)?

dM
— x —R*T*=-M*M"*=—
dt . E

Area x Temperature®

Light-mass PBHs can be
detected/constrained by the
effects of evaporation.

Age of a PBH with initial mass Mo (M,)?

53
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Properties of evaporating Black Holes

hes 1
— T x —
87TG]€BM M

T

What is the rate of mass loss (or energy injected)?

dM —1
— x —R*T*=-M*M"*=—
dt . E

Area x Temperature*

Age of a PBH with initial mass Mo (M,)?

54
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Properties of evaporating Black Holes

Age of a PBH with initial mass Mo (M,)?

* PBHs with My <5 x 10" g would have already
evaporated away.

* PBHs with My > 5 x 10" g lose negligible mass
during the age of the universe.

55
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Properties of evaporating Black Holes

Age of a PBH with initial mass Mo (M,)?

* PBHs with My <5 x 10" g would have already
evaporated away.

* PBHs with My > 5 x 10" g lose negligible mass
during the age of the universe.

The actual rate of mass-loss, dM —f(M)
but the f(M) imparts only a pr X Y
weak dependence.

56
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Properties of evaporating Black Holes
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Properties of evaporating Black Holes

PBHs are not perfect blackbodies.

The correct spectrum of Hawking radiation by non-
spinning black holes is given by:

dQNi,lm 1 I‘Silm(E7@—>6raybody factors)
dtd 21 eB/T — (_ 1 ) 281 Encode deviation
from blackbody
Qpectrum. y

See https://arxiv.org/pdf/1905.04268 58
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Properties of evaporating Black Holes

From the expression for emission of each quantum number for a given
particle,

dQNi,lm 1 Fsilm(Ea M)

dtdE 27 eB/T—(—1)2si

The total emission of each particle ¢ is obtained by summing over all
multiplicities and all quantum numbers:

dzN dzNi,lm
dtdE — gcolour X ghelzczty X gantz —particles dtdE

[, m
See https://arxiv.org/pdf/1905.04268 59
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Properties of evaporating Black Holes

/ Age of a PBH with initial mass M, oc(M,)? \

* PBHs with My <5 x 10" g would have already
evaporated away.

* PBHs with My > 5 x 10" g lose negligible mass
\ during the age of the universe. /

These facts are true with graybody factors taken into consideration.

60
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Hawking radiation spectra

* As remarked before, Graybody factors encode the deviation of the Hawking spectrum
from the ideal blackbody spectrum.

* Calculated by solving for the transmission probability of wavefunctions of particles
in the curved spacetime of the black hole.

» Weuse BlackHawk wv2.0%* to calculate the Graybody factors for each particle for
all the modes, and sum them to obtain the primary spectrum of each particle.

e BlackHawk wv2.0 has in-built functionality, which computes the spectrum of
cosmologically stable particles after hadronization and decays have taken place- the
secondary spectrum.

* We are interested in the total spectrum of each particle (say photons)- sum of its
primary spectrum and the contribution from secondary spectra of all particles.

* https://arxiv.org/pdf/1905.04268 61
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Hawking radiation spectra

016

Emission spectrum of photons from a non-spinning Black Hole of mass 10*° g
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Hawking radiation spectra

Emission spectrum of e /e~ from a non-spinning Black Hole of mass 1016 g
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Hawking radiation spectra

For spinning Black Holes, it turns out that the temperature depends
on the spin too.

" 1 V1 — a*?
ArM \ 1+ /1 — a*?
Y .
where, R W is the dimensionless spin parameter.

See https://arxiv.org/pdf/1905.04268 64
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Hawking radiation spectra

For spinning Black Holes, the Hawking radiation spectrum is given

by:
dQN’i,lm i ]_ FSilm(EyM, Q)
dtdE 21 e(E—mQ)/T _(_1)2s:
where,
Q=4nJ/MA
2 J2
A=8rM | M+ M? — 2 )

See https://arxiv.org/pdf/1905.04268
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Hawking radiation spectra

016

Emission spectrum of photons from an a, = 0.999 Black Hole of mass 10*° g
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Hawking radiation spectra

Emission spectrum of et /e~ from an a, = 0.999 Black Hole of mass 10° g
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Properties of evaporating Black Holes
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What Hawking radiation does to IGM’s temperature

The following differential equations have to be solved simultaneously:

Background temperature

evolution without energy

injection. Consists of:
Adiabatic cooling due to

expansion of the universe.
Compton scattering with the
CMB.

Atomic cooling processes
like recombination etc.
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What Hawking radiation does to IGM’s temperature

The following differential equations have to be solved simultaneously:

= O 4 fin

Heating up of IGM due to
energy injection in IGM from

. (0 . inj
xr =T ( ) + T exotic sources like

evaporating black holes.
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What Hawking radiation does to IGM’s temperature

The following differential equations have to be solved simultaneously:
A O

i =% 4 g™

Background change in ionized
hydrogen fraction. Consists of

atomic collisional ionization and
recombination.
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What Hawking radiation does to IGM’s temperature

The following differential equations have to be solved simultaneously:
A O
i =30 4 g™

Contribution to ionization due to

exotic energy injection, like
evaporating PBHs.
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What Hawking radiation does to IGM’s temperature

The following differential equations have to be solved simultaneously:
A O
i = &0 4 ™

DarkHistory, a publicly available code can solve these equations self-
consistently and simultaneously due to particle dark matter decay to
Standard Model particles.

The first such code to take into account the effect on 7;,,; term due to non-

ZeIO Tipj.
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What Hawking radiation does to IGM’s temperature:
Moditying DarkHistory

DarkHistory™* can calculate the temperature-history

of the IGM due to the decay of Dark Matter particles to
Standard Model particles.

How to modify DarkHistory to calculate the
temperature-history of IGM due to Hawking-evaporating
PBHs?

* https://arxiv.org/pdf/1904.09296 75



Abhijeet Singh Indian Institute of Science, Bengaluru

What Hawking radiation does to IGM’s temperature:
Moditying DarkHistory

We use DarkHistory as if we are considering decaying
particle Dark Matter.

However, we change the spectrum of v and e*/e~
generated by the each particle’s decay in the code.

We change it such that the overall spectrum of v and

e™ /e~ generated over a long time-scale is identical to that
generated by evaporating PBHs.
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What Hawking radiation does to IGM’s temperature:
Moditying DarkHistory

Suppose we run the code with Dark Matter particles of mass m,, decaying
with a lifetime of 7.

Suppose we want to calculate the effect of PBHs of mass mppu on the
IGM.

For the moment, focus on the ~-spectrum only.
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What Hawking radiation does to IGM’s temperature:
Moditying DarkHistory

Let the v -spectrum of the Hawking
evaporation of PBHs be denoted by:

2N,
dtdE

Over a time-period 7,a PBH dumps the
following spectrum of photons:

AN, (&N,
iE  \dtde )’
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What Hawking radiation does to IGM’s temperature:
Moditying DarkHistory

Let the v -spectrum of the Hawking
evaporation of PBHs be denoted by:

2N,
dtdE

Over a time-period 7,a PBH dumps the

following spectrum of photons:

AN, [ dN,
iE  \dde )’

If this same spectrum has to
come from particles (with
lifetime 7) , each particle has to
dump the following spectrum
individually:

d? Ny\ 7
dtdE ) n.
n, being the number of Dark
Matter particles.
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What Hawking radiation does to IGM’s temperature:
Moditying DarkHistory

Because the total mass of dark If this same spectrum has to
matter (per volume) is fixed, n, come from particles (with
is simply given by, lifetime 7) , each particle has to
MPBH dump the following spectrum
individually:
My
Thus, spectrum from each <d2 N, > T
particle should be dtdE Ny

2
(d N, ) ( my ) - n, being the number of Dark

dtdE MPBH Matter particles.
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What Hawking radiation does to IGM’s temperature:
Moditying DarkHistory

To summarize, if we are dealing with PBHs of mass mppn giving a

spectrum of photons,
d2N,
dtdE

run the code meant for particle Dark Matter, by just replacing the
photon spectrum from the particle by:

d? N, My where m, and 7 have arbitrary but
I T reasonable values.

MpBH
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What Hawking radiation does to IGM’s temperature:
Moditying DarkHistory

<d2 N, > ( My ) Can m,, and 7 really have arbitrary
T

? Yeg!
dtdFE MPRH values? Yes!

Suppose Alice uses a value of m, twice as much as Bob uses.
The energy injected by each event is double for Alice.

But the number density of the particles would be half for Alice
compared to Bob. So the total energy injected is the same!
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What Hawking radiation does to IGM’s temperature:
Modifying DarkHistory

<d2 N, ) ( My ) Can m, and 7 really have arbitrary
T

dtdFE MPBH values? Yes!

Suppose Alice uses a value of 7 twice as much as Bob uses.
The energy injected by each event is double for Alice.

But the frequency of energy injection would be half for Alice
compared to Bob. So the total energy injected is the same!
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What Hawking radiation does to IGM’s temperature:
Results

Temperature evolution of IGM with 101 g PBHs as Dark Matter (a* = 0)
107

— PBHDM fpgyr =1
| — PBHDM fpgy = 001
106 4 —— Tcms

Matter Temperature T}, no DM

Helll

Temperature (K)

107 4

100 | 10! 102 103
Redshift (1 + z
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What Hawking radiation does to IGM’s temperature:
Results

Temperature evolution of IGM with 1017 g PBHs as Dark Matter (a* = 0)
107

— PBHDM fpgyr =1
. — PBHDM fpgy = 001
106 4 —— Tcms

Matter Temperature T}, no DM

Helll

Temperature (K)

107 4

100 | 10! 102 103
Redshift (1 + z
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What Hawking radiation does to IGM’s temperature:
Results

Temperature evolution of IGM with 100 % Dark Matter as PBHs (a* = 0)
107

—— 10'° g PBHs

—— 10 g PBHs

— Tems

Matter Temperature T}, no DM

106 J

Helll

Temperature (K)

2

101 J

100 : : , :
100 10! 102 103
Redshift (1 + z)
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What Hawking radiation does to IGM’s temperature:
Results

Temperature evolution of IGM with 101 g PBHSs as Dark Matter (a*# 0)

107
— a* = 0.000
— a* = 0.500
10° — " =099
—— Tcms
Matter Temperature T}, no DM
10% 4
¥
% 10* 5 =
o
g_‘ 10% 4
a
=
107 4
10 4
10° ‘ . . :
100 10! 102 108
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Lyman-« Transition

1s (n =1, 1=0)

\ f

Bohr Dirac

Image credit: Wikipedia 89
https://en.wikipedia.org/wiki/Lyman-alpha
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Lyman-« Forest

Image credit: Wikipedia 91
https://astro.ucla.edu/~wright/Lyman-alpha-forest.html
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Lyman-«a spectrography as a thermometer of IGM

* Currently, no observations at z> 6 as no light reaches us, because the intervening medium is
neutral.

* At z<6, the density of the intervening medium is not uniform- there are ‘clouds’ of gas
scattered around.

e The temperature of the gas is strongly correlated with density:
T:T0A7_1 A:p/<p>

* By comparing the observed Lyman-a forest spectra with the mock spectra from
hydrodynamical simulations, the density and temperature are measured.

e Using the above relation, the mean temperature 7 is inferrred.

92



Abhijeet Singh

Indian Institute of Science, Bengaluru

Lyman-«a spectrography as a thermometer of IGM

i1 Haardt+2012 o @ Hiss+2018 Vv ¥V Rorai+2017b ¥ % Bolton+2014
mn L4A0ON2048 COLD f ¢ Walther+2019 ® # Bolton+2012b ¢ & Telikova+2019
visi L4ON2048 HOT ¢ ¢ Becker+2011(y=1.3) & & Bolton+2012b (Hell) & 4 This Work
.. LAON2048 DEFAULT A A Boera+2014 (y=1.3) ¥ ¥ Boera+2019 (Gaikwad+2020)
(Puchwein+2019)
1 | | | I I
20 ] =
. * A o
M + -4 v, 0 Yig, {
o 151~ 4 1} - |1T‘ h‘*;””'a “.""’hn” |-|-|.uullll" ai™y Sl T
D - ‘;“'l il '+l’/ e .‘."’.I'i.\lll
ey wedl 1l oty = _--I-n...-- R R TR IR L
\-_/10_\ Ve nyatd ? ‘J.{’"- - --l--'$-+ -..--l------
2 L] ‘e ; LI
E."' ¥ f”urnuur?:u:;\'||r|&|'|;|'| |I||u'|'|Hd;Pmlu|m\llﬂi‘\‘i't‘+~'i'i'l'“ifrurlMMrlulnklrl‘ul.nalu.rjlalaI||I1”“““II
5 - L “rlluuulmu.u.
| 1 1 1 1 |
2.0 T T T T T =
1.8} %} { } + t _
1.6‘”'[. l‘.£+..I. lf.}‘ﬁl"i.%." “\“‘ |||\l\l pininl Ill\lllllll|I|||I\||I|I||flllll\l||||||\lll|'||[|:
?“1.4— '?I]W. j"'fll’luu [ wpt n
m" "‘-i‘.--- - bl R LY 'r;i'wxu 10018 gy
1.2 l 4 . 'nm;;mwmm\lrunnl|\m\rlI|\|lum\“”H'lfmuwmnm
e
e e e BT T T
0.6 1 1 | | 1 1 =
2 3 4 5 4] 7 8

Image credit: https://arxiv.org/pdf/2001.10018
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Lyman-«a spectrography as a thermometer of IGM

Measurements at redshifts z<3 not useful because handling the
second reionization of He is tricky.
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Resulting constraints on PBHs’ existence

Image credit:
https://arxiv.org/pdf/2008.01084
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Resulting constraints on PBHs’ existence

Image credit:
https://arxiv.org/pdf/2008.01084
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Next: Combine the computed temperature history with the temperature data
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Resulting constraints on PBHs’ existence

We employ a modified x? test, in which we penalize the prediction of

temperature at a redshift, if it predicts a temperature higher than the
observed temperature.

If the predicted temperature is less than observed temperature, the prediction
is not penalized. This is in recognition of the fact that the gap between the
prediction and observation could be due to neglecting heating due to
reionization.

By employing this statistical test, we get conservative constraints.
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Resulting constraints on PBHs’ existence

Modified x* test:
Don’t penalize PBH model Penalize PBH model
Observed
Reionization
Reionization Prediction
Prediction
Observed

Temperature
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Resulting constraints on PBHs’ existence

Constraints on PBH as Dark Matter (ax = 0.000)
100

101 Unallowed space

10:16 1017
MppH ()
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Resulting constraints on PBHs’ existence
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Resulting constraints on PBHs’ existence

Constraints on PBH as Dark Matter (ax = 0.000)
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Resulting constraints on PBHs’ existence

Constraints on PBH as Dark Matter (ax = 0.999)
10V 4

101 Unallowed space

10'16 1017
MpgH ()
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Resulting constraints on PBHs’ existence

Constraints on PBH as Dark Matter (ax = 0.999)
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Resulting constraints on PBHs’ existence

Constraints on PBH as Dark Matter
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Resulting constraints on PBHs’ existence

Future work: Take into account the reionization processes,
and the He- abundance in IGM.
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PMREF teaching duties

Weekly classes on Newtonian mechanics at the M.E.S.
College of Arts, Commerce and Science, Malleshwaram
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Summary

Black Holes formed early in the universe, a.k.a Primordial Black Holes can constitute
all/part of Dark matter.

Hawking evaporation of PBHs in the mass range 5 x 1015 g to 1017 g can lead to
direct and indirect observable consequences, providing a way to constrain these beasts.

Hawking evaporation spectrum which is stable over cosmological time-scales is
utilized to calculate its effect on the evolution of Inter-galactic medium’s temperature.

The above is done by using BlackHawk v2.0 to generate Hawking radiation
spectra, and modifying and using DarkHistory to calculate the temperature
evolution.

The temperature of the IGM has been measured at some redshifts using the Lyman-«
Spectroscopy.

By comparing the calculated temperature evolution of IGM assuming evaporating
PBHs’ existence with the measured temperatue values leads to upper limits on fraction
of Dark Matter in the form of PBHs.

110



Abhijeet Singh Indian Institute of Science, Bengaluru

Pandora’s Box

Image generated using Google Gemini
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What is everything made of?
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Primordial Black Holes 101

* Black Holes formed in the early universe from the collapse of high matter-overdensities.

— - The same overdensities that form galaxies when not as high.
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Image credit: https://arxiv.org/pdf/2402.15211 Image credit: https://commons.wikimedia.org/w/index.php?curid=131103715 113
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Primordial Black Holes 101

* They can be formed having a wide range of masses.

Image credit: Kavanagh GWA4FP 2019
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Lyman-« Forest
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Lyman-« Forest
Flux Lyman Alpha Forest
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What Hawking radiation does to IGM’s temperature:
Results

« Direct recombinations to the ground state of hydrogen are very inefficient: each such event leads to a photon with
energy greater than 13.6 eV, which almost immediately re-ionizes a neighboring hydrogen atom.
Electrons therefore only efficiently recombine to the excited states of hydrogen, from which they cascade very
quickly down to the first excited state, with prin u& T numbern = 2.
From the first excited state, electrons can reach the ground state n = 1 through two pathways:

* Decay from the 2p state by emitting a Lyman on. This photon will almost always be reabsorbed by
another hydrogen atom in its ground state. However, cosmological redshifting systematically dec es the
photon frequency, and there is a small chance that it escapes re rption if it gets redshifted far enough from
the Lyman-a lin sonant frequency before encountering another hydrogen atom.

e Decay from the 2s state by emitting two photons. This 1 decay process is very slow, with a ratel®] of

8.22 s~ 1. It is however competitive with the slow rate of Lyman- pe in producing ground-state hydrogen.

Atoms in the first excited state may also be onized by the ambient B photons before they reach the ground
state. When this is the case, it is as if the mbination to the excited state did not happen in the first place. To

account for this possibility, Peebles defines the factor C as the probability that an atom in the first excited state
reaches the ground state through either of the two pathways described above before being photoionized.

This model is usually described as an "effective three-level atom" as it requires keeping track of hydrogen under

three forms: in its ground state, in its first excited state (assuming all the higher excited states are in

equilibrium with it), and in its ionized state.

Image credit: Wikipedia ]_].7
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