

1

Belle II physics: a brief tour

Jim Libby

Indian Institute of Technology Madras

Outline

- **1.** The why: flavour physics in e^+e^- and Belle II
- 2. The what: general methods and recent highlights
 - B-physics primer
 - B-physics
 - CP violation examples
 - Evidence for $B^+ \rightarrow K^+ v v$
 - Search for $B^+ \rightarrow K^* \tau \tau$
 - More than *B* physics
 - τ lepton-flavour violation
 - hadronic cross sections for hadronic vacuum polarization to g-2
 - Exotic hadrons

3. The future: status and prospects for SuperKEKB and Belle II

Part I: the why

e⁺e⁻ flavour physics and Belle II

Why flavour physics? – history of discovery

- Particle zoo of mesons and baryons discovered in 1950s and early 1960s lead to the quark model
 - up (u)
 - down (d)
 - strange (s)
- An allowed but rare decay such as

$$K_L^0(s\overline{d}) \to \mu^+\mu^-$$

was predicted **but not seen!**

Why flavour physics? – history of discovery

Phys. Rev. D 2, 1285 (1970)

 $m_c \sim 3 m_{\kappa}$

Such rare virtual processes tell you about higher energy particles

5

CKM matrix

- Two by two mixing matrix proposed by Cabibbo
 - Kobayashi-Maskawa proposed third generation to explain observed CP violation by Cronin and Fitch
- 3×3 unitary complex matrix
 - 4 parameters
 - 3 mixing angle and 1 phase
- Intergenerational coupling disfavoured

$$\begin{pmatrix} u & c & t \end{pmatrix} \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Relative magnitude of elements **Responsible for CP** violation

Visualising CP violation: the unitarity triangle

1)
$$\begin{pmatrix} 1 - \lambda^{2} / 2 \\ -\lambda \\ A\lambda^{3} \begin{bmatrix} 1 - (\rho - i\eta) \end{bmatrix} \end{pmatrix}$$

$$\lambda = \sin \theta_{c} = 0.22 \\ A\lambda^{2} \\ A\lambda^{2} \\ 1 \end{pmatrix} + O(\lambda^{4})$$

$$A\lambda^{2} \\ A\lambda^{3} \begin{bmatrix} 1 - (\rho - i\eta) \end{bmatrix} \\ A\lambda^{2} \\ A\lambda^{2} \\ 1 \end{pmatrix} + O(\lambda^{4})$$

2) Exploit unitarity (1st and 3rd col.)

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$\begin{split} \phi_1 &= \beta \\ &= \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \\ &\simeq \arg\left(\frac{1}{1-\rho-i\eta}\right) \end{split}$$

Over constraint – loop sensitivity

Tree level only

Loop-level only

Why *B* physics at the Y(4S)?

• The process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$ a.k.a. continuum

Why *B* physics at the Y(4S)?

- The process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$ a.k.a. continuum
- Advantages compared to proton-proton
 - Low average multiplicity neutral reconstruction
 - Constrained kinematics good missing momentum reconstruction
 - Correlated $B^0 \overline{B}{}^0$ high flavour-tagging efficiency
 - Open trigger 100% efficient for almost all *B* decays

Why *B* physics at the Y(4S)?

- The process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$ a.k.a. continuum
- <u>Advantages compared to proton-proton</u>
 - Low average multiplicity neutral reconstruction
 - Constrained kinematics good missing momentum reconstruction
 - Correlated $B^0 \overline{B}{}^0$ high flavour-tagging efficiency
 - Open trigger 100% efficient for almost all *B* decays
- Disadvantages compared to proton-proton
 - Cross section 150,000 times smaller
 - No B_s, B_c, or $\Lambda_{\rm b}$ produced can run at Y(5S) for B_s
 - No boost in the c.m. frame partially overcome by the asymmetric beams

Detectors and data samples

- Belle + BaBar collected
 0.71+0.43=1.14 ab⁻¹ Y(4S) samples
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay

Detectors and data samples

- Belle + BaBar collected
 0.71+0.43=1.14 ab⁻¹ Y(4S) samples
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay

• SuperKEKB + Belle II@KEK, Tsukuba

- nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab⁻¹ sample
- World record 4.7×10³⁴ cm⁻²s⁻¹
- Target 6×10³⁵ cm⁻²s⁻¹
- Run 1 362 fb⁻¹ at Y(4S)
- + 42 fb⁻¹ off-resonance to characterize continuum

Detectors and data samples

- Belle + BaBar collected
 0.71+0.43=1.14 ab⁻¹ Y(4S) samples
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay

• SuperKEKB + Belle II@KEK, Tsukuba

- nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab⁻¹ sample
- World record 4.7×10³⁴ cm⁻²s⁻¹
- Target 6×10³⁵ cm⁻²s⁻¹
- So far 362 fb⁻¹ at Y(4S)
- + 42 fb⁻¹ off-resonance to characterize continuum

Part II: the what

Recent highlights

B-factory analysis essentials 1 – beam constrained kinematics

B-factory analysis essentials 2 – continuum suppression

- In the c.m. frame B mesons almost at rest when they decay
 - isotropic distribution of particles
- In the c.m. frame continuum qq back-to-back
 - jetlike distribution of particles

1

B-factory analysis essentials 2 – continuum suppression

- In the c.m. frame B mesons almost at rest when they decay
 - isotropic distribution of particles
- In the c.m. frame continuum qq back-to-back
 - jetlike distribution of particles
- Shape variables, e.g., thrust and Fox-Wolfram moments, help distinguish topologies
- Ideal task for machine-learning
- Output oft used as a fit variable

B-factory analysis essentials 3: hadronic tag

- Full-reconstruction of one B decay in a large number of high BF modes on one side
 - $B \rightarrow D^{(*)0} \, m \pi^{\pm} n \pi^{0}$, where $m \ge 1 \, n \ge 0$
- Reconstruct other B as signal with missing energy

.

B-factory analysis essentials 3: hadronic tag

- Full-reconstruction of one B decay in a large number of high BF modes on one side
 - $B \rightarrow D^{(*)0} \, m \pi^{\pm} n \pi^{0}$, where m $\geq 1 n \geq 0$
- Reconstruct other B as signal with missing energy
- Machine learning algorithm used to boost efficiency as much as possible B⁺ → K⁺ T⁻
 - <u>Comput. Softw. Big Sci. 3 (2019) 1, 6</u>
- Total efficiency < 1% but a powerful tool
- Requires calibration

20

B-factory analysis essentials 4 – vertexing and flavour tagging

$$\bigvee_{\overline{B^0}} \xrightarrow{f_{CP}} \propto |V_{td}|^2 e^{2i\phi_1}$$

B-factory analysis essentials 4 – vertexing and flavour tagging

B-factory analysis essentials 4 – vertexing and flavour tagging

Time-dependent *CP* violation - $B^0 \rightarrow \eta' K^0_{\varsigma}$

- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \rightarrow c\bar{c}s$ transitions such as $B^0 \rightarrow J/\psi K_S^0$

Time-dependent *CP* violation - $B^0 \rightarrow \eta' K_S^0$

- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \rightarrow c\bar{c}s$ transitions such as $B^0 \rightarrow J/\psi K_S^0$
- Reconstructing $\eta' \rightarrow \eta(\gamma\gamma)\pi^+\pi^-$ and $\eta' \rightarrow \rho(\pi^+\pi^-)\gamma$ we select 829 ± 35 events in 362 fb⁻¹ sample
 - 3D fit to ΔE , m_{BC} and continuum suppression output

Time-dependent *CP* violation - $B^0 \rightarrow \eta' K_S^0$

- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \rightarrow c\bar{c}s$ transitions such as $B^0 \rightarrow J/\psi K_S^0$
- Reconstructing $\eta' \rightarrow \eta(\gamma\gamma)\pi^+\pi^-$ and $\eta' \rightarrow \rho(\pi^+\pi^-)\gamma$ we select 829 ± 35 events in 362 fb⁻¹ sample
 - 3D fit to ΔE , m_{BC} and continuum suppression output
- sin $2\phi_1 = 0.67 \pm 0.10 \pm 0.04$
- Consistent with current HFLAV average and that from $b \rightarrow c \bar{c} s$ result

- α/ϕ_2 now the least precise angle of the unitarity triangle
- Isospin relations among all B→ππ branching fractions and CP asymmetries provide constraints
 - Gronau and London PRL 65 3381 (1990)
- Weakest link: $B^0 \rightarrow \pi^0 \pi^0$

 $\alpha/\phi_2: B^0 \rightarrow \pi^0 \pi^0$

Paper in preparation

- α/ϕ_2 now the least precise angle of the unitarity triangle
- Isospin relations among all B→ππ branching fractions and CP asymmetries provide constraints
 - Gronau and London PRL 65 3381 (1990)
- Weakest link: $B^0 \rightarrow \pi^0 \pi^0$

 $\alpha/\phi_2: B^0 \rightarrow \pi^0 \pi^0$

- New result from Belle II
 - 4-D fit including tagging probability
 - Graph-neural-network based tagger
 - 18% more powerful than before
 - arXiv:2402.17260 [hep-ex] (acc. PRD)

Beam-energy constrained $\pi^0\pi^0$ invariant mass

 $\mathscr{B} = (1.26^{+0.20}_{-0.19} \pm 0.11) \times 10^{-6}$ $A_{CP} = 0.06 \pm 0.30 \pm 0.06$

Transformed wrong-

flavour-tag probability

 $B^+ \rightarrow K^+ \nu \overline{\nu}$: Motivation

- Well known in SM but very sensitive to BSM enhancements 3rd gen
 - $B(B \rightarrow K^+ vv) = (5.6 \pm 0.4) \times 10^{-6} [arXiv:2207.13371]$

 $B^+ \rightarrow K^+ \nu \overline{\nu}$: Motivation

- Well known in SM but very sensitive to BSM enhancements 3rd gen
 - $B(B \rightarrow K^+ \nu \nu) = (5.6 \pm 0.4) \times 10^{-6} [arXiv:2207.13371]$
- Challenging experimentally
 - Low branching fraction with large background
 - No peak two neutrinos leads to no good kinematic constraint

$B^+ \to K^+ \nu \overline{\nu}$: Analysis strategy

- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag

$B^+ ightarrow K^+ u \overline{ u}$: Analysis strategy

- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag
- Use event variables to suppress background
 - Inclusive:
 - 1. preselect events where missing momentum and signal kaon well reconstructed
 - 2. First boosted decision tree (BDT1): 12 variables
 - 3. Second BDT2: 35 variables 3 times sensitivity

$B^+ ightarrow K^+ u \overline{ u}$: Analysis strategy

- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag
- Use event variables to suppress background
 - Inclusive:
 - 1. preselect events where missing momentum and signal kaon well reconstructed
 - 2. First boosted decision tree (BDT1): 12 variables
 - 3. Second BDT2: 35 variables 3 times sensitivity
 - 4. BDT2 fit extraction variable in bins of $\nu \bar{\nu}$ mass-squared q²
 - Hadronic tag: single BDT for fit
 - key variable any additional calorimeter energy other than K+tag

2000

0.92

0.94

0.96

Classifier output³³

0.98

1.0

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Inclusive signal extraction

- 1 signal and 7 background templates from simulation
 - corrected using control samples
- Profile maximum likelihood fit inc. systematic uncertainties
- Continuum template constrained by off-resonance

(3 bins in q_{rec}^2) x (4 bins in $\mu(BDT_2)$)

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Inclusive signal extraction

• 1 signal and 7 background templates

Two questions 1.Is the signal efficiency, i.e., BDT, well modelled? 2.Is the B background understood?

• Continuum template constrained by off-resonance

(3 bins in q_{rec}^2) x (4 bins in $\mu(BDT_2)$)

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Efficiency validation

Rest of the event $B^ J/\psi$ Rest of the event B^-
$B^+ \rightarrow K^+ \nu \overline{\nu}$: Efficiency validation

Ratio between selection on data and simulation for the control sample 1 with 3% uncertainty

B^+ → $K^+ \nu \overline{\nu}$: >90% background from B→D(K⁺X)lv + B →D(K₁X)K⁺

- KX system agrees well between data and MC
- Prompt K⁺ production studied using prompt π^+ from B⁺ $\rightarrow \pi^+$ X decays
- Systematic uncertainties on decay branching fractions, enlarged for $D \rightarrow K_L X$ and $B \rightarrow D^{**} I v$

$B^0 \rightarrow K^{*0} \tau^+ \tau^-$

- Very sensitive to explanations of the other anomalies
 - SM branching fraction prediction 10⁻⁷

TAPP

Paper in preparation

Belle I

Belle I

$B^0 \rightarrow K^{*0} \tau^+ \tau^-$

- Very sensitive to explanations of the other anomalies
 - SM branching fraction prediction 10⁻⁷
- Hadronic B tagging
- Different of classes of tau decay
 - Missing energy, no additional energy in calorimeter,... into a classifier that is fit to extract yield
- Limit twice improved over Belle

$B^0 \to K^{*0} \tau^+ \tau^-$

- Very sensitive to explanations of the other anomalies
 - SM branching fraction prediction 10⁻⁷
- Hadronic B tagging
- Different of classes of tau decay
 - Missing energy, no additional energy in calorimeter,... into a classifier that is fit to extract yield
- Limit twice improved over Belle
 - Improved tagging and signal efficiency

Tau physics motivation I

- 185 standard model decay modes studied
 - principally hadronic final states
- Unique laboratory to study weak interaction

Tau physics motivation I

- 185 standard model decay modes studied
 - principally hadronic final states
- Unique laboratory to study weak interaction
- Third-generation therefore beyond-SMsensitivity anticipated
 - Any observation of lepton-flavour violation in $\tau \rightarrow 3\mu$, $\tau \rightarrow \mu\gamma$, $\tau \rightarrow l\phi$ etc **new physics**
 - SM highly suppressed
- Connections to g-2 and lepton universality violation in b decay

Why τ physics at the Y(4S)?

• The centre-of-mass energy of the B factories process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q =$ u, d, s, c a.k.a. continuum Non Bhabha cross section in nb

Why τ physics at the Y(4S)?

- The centre-of-mass energy of the B factories process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q =$ u, d, s, c a.k.a. continuum
- Similar cross section for $e^+e^- \rightarrow \tau^+\tau^-$
- 920 million tau pairs per ab⁻¹ of integrated luminosity

$\tau \rightarrow 3\mu$ – lepton flavour violation search

 Inclusive tag of the non-signal τ to increase efficiency – multivariate

$\tau \rightarrow 3\mu$ – lepton flavour violation search

- Inclusive tag of the non-signal τ to increase efficiency – multivariate
- Cut 'n' count in 2D plane of
 - $M_{3\mu}$ and $\Delta E = E_{3\mu} E_{beam}$ (in c.m.)
 - Sideband derived background estimate $0.5^{+1.4}_{-0.5}$ events
- One event observed
- World best limit
 - BF < 1.9×10⁻⁸ (90% c.l.)
- Area of competition
 - <u>LHCb</u> BF < 4.1×10⁻⁸ (Run 1 only)
 - <u>CMS</u> BF < 2.9×10⁻⁸ (Run 1+2)

...away from heavy flavour muon g-2 \sim

...away from heavy flavour muon g-2

 $\sigma(e^+e^- \to \pi^+\pi^-\pi^0)$

Muon anomalous magnetic moment

$$a_{\mu} = \frac{g-2}{2} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QCD}}$$

$$\downarrow \text{Hadron contribution term}$$

$$\downarrow a_{\mu}^{\text{QCD}} = a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLbL}}$$

$$\downarrow \text{Leading-order HVP rerm}$$

$$a_{\mu}^{\text{HVP,LO}} = \frac{\alpha^{2}}{3\pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \frac{ds}{s} R(s)K(s) \qquad \text{Hadronic R-ratio}$$

$$\downarrow R(s) = \frac{\sigma(e^{+}e^{-} \rightarrow hadrons)}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})}$$

2nd largest contribution to the hadronic vacuum polarization estimate as region below 1 GeV in c.m. energy dominates

arXiv:2404.04915 [hep-ex]

$$\sigma(e^+e^-
ightarrow \pi^+\pi^-\pi^0)$$

- Initial-state radiation technique wide invariant mass range
- Partial Run 1 data set 191 fb⁻¹
- Selection via kinematic fits
- Key challenge is π^0 efficiency
 - Custom determination using ω decay
- Background control samples for $e^+e^- \rightarrow \pi^+\pi^-\pi^0 \pi^0 \gamma_{ISR}, e^+e^- \rightarrow q \bar{q} \gamma_{ISR}$ and $e^+e^- \rightarrow K^+K^-\pi^0 \gamma_{ISR}$

Signal process : $e^+e^- \rightarrow \gamma_{\rm ISR}\pi^+\pi^-\pi^0(\rightarrow\gamma\gamma)$ Signal spectrum Efficiency $\frac{dN_{\rm signal}}{dm} = \sigma_{ee \rightarrow 3\pi} \cdot \varepsilon \cdot \frac{d\mathcal{L}_{\rm eff}}{dm}$ 3π mass Cross section Effective luminosity

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0)$

Source	$0.62-1.05 \text{ GeV/}c^2$
Trigger	0.1 (-0.09)
ISR photon detection	0.7 (+0.15)
Tracking	0.8 (-1.35)
π^0 detection	1.0 (-1.43)
Kinematic fit (χ^2)	0.6 (+0.0)
Event selection	0.2 (-1.90)
Generator	1.2
Integrated luminosity	0.6
Radiative corrections	0.5
MC statistics	0.2
Background subtraction	0.3–0.5
Unfolding	0.7 - 15
Total uncertainty	2.2-15
(Total correction $\varepsilon/\varepsilon_{\rm MC} - 1$)	(-4.61)

$$a_{\mu}^{3\pi} = (49.02 \pm 0.23 \pm 1.07) \times 10^{-10},$$

2.6 tension with BaBar

Evidence for P_{cs}(4459)

- OZI suppressed decays of Y(1S) and Y(2S) rich in gluons
 - enhanced baryon production
 - pentaquark production?
- Measure inclusive Y(1S,2S) \rightarrow J/ ψ A + X decays in the Belle sample
- Search m(J/ $\psi \Lambda$) for pentaquark signal
 - background from sideband and off resonance
- Use LHCb mass and width from their evidence in ±b decay - <u>Sci. Bulletin 66, 1278</u> (2021)
 - 3.3 standard deviation significance
 - free mass and width 4 standard deviation local significance

Paper in preparation

Part III: the future

Belle II and SuperKEKB prospects

- Run 1 (2019-2022) similar data set to 1st generation B factory
- Long shutdown 1 LS1 (2022-2024)
 - detector improvements mainly installation of full two-layer pixel detector (PXD2)
 - accelerator improvements, e.g., non-linear collimators to combat beam background

Evolution of peak luminosity

- Run 2 (2024)
 - back to operation at $4 \times 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$
 - detector performance as before or better
 -but the goal in this run is luminosity of ~10³⁵ cm⁻²s⁻¹

Peak luminosity [10³⁴ cm⁻²s⁻¹] 5 3 2

Evolution of peak luminosity

• Run 2 (2024 –)

- Sudden beam loss has happened frequently that can lead to v. large dose in the detector
 - Hampering increasing luminosity
- Two such losses led to damage of 2% of PXD2 gates
 - turned off PXD2 as a precautionary measure until beam losses mitigated
- So far Run 2 has been largely dedicated to machine studies
 - only ~100 fb⁻¹ collected
- Some understanding of how the losses start
 - remediation in summer shutdown

- Run 2 is long end 2028 or later
 - Steady accumulation at ~2 x 10³⁵ cm⁻²s⁻¹ for several ab ⁻¹ 2nd generation
 - After Run 2 upgrade proposal for reach design luminosity and tens of ab $^{-1}$
 - Framework CDR <u>arXiv:2406.19421</u>

Conclusion

- A brief tour of the why and current Belle II physics
 - Highlights: Kvv, K*ττ, CP violation and tau/low multiplicity physics
- Lot's more to be done with the Run 1 data + Belle
- Life at the intensity frontier is hard but hopefully we will enter the 10⁻³⁵ cm⁻²s⁻¹ era soon in Run 2

Backup

Belle II upgrade

- Many plans and possibilities
- Work on a Conceptual Design Report begun to be delivered in 2023
- Followed by a Technical Design Report in 2024
- Shutdown end of 2028 or later for installation
- Accumulate 10s of ab⁻¹ into the 2030s

01	Upgrade ideas scope and technology	Time scale
DMAPS	Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from ALICE ITS developed for ATLAS ITK.	LS2
OI-DUTIP	Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on SOI	LS2
hin Strips	Thin and fine-pitch double-sided silicon strip detector system replacing the current SVD and potentially the inner part of the CDC	LS2
CDC	Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk	< LS2
ОР	Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended lifetime ALD PMT, study of SiPM photosensor option	LS2 and later
CL	Crystal replacement with pure CsI and APD; pre-shower; replace PIN-diodes with APD photosensors.	> LS2
(LM	Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF	LS2 and later
rigger	Take advantage of electronics technology development. Increase bandwidth, open possibility of new trigger primitives	< LS2 and later
TOPGAP	Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger	> LS2
PC	TPC option under study for longer term upgrade	> LS2

Belle III + ChiralSuperKEKB > 2030+

Light dark sector searches

- Can access the mass range favored by light dark sector
 - Possible sub-GeV scenario

Light dark sector searches

- Can access the mass range favored by light dark sector
 - Possible sub-GeV scenario
- DM weakly coupled to SM through a light mediator X:
 - vector (Z'/dark photon), axion like particles (ALPs), scalar (dark Higgs) or fermions (sterile v)
- Some links to anomalies, e.g., g–2

Invisible decay of Z' to dark matter

• Search for narrow peak in the recoil mass of dimuon pairs

Invisible decay of Z' to dark matter

- Limits on Z' coupling g' and mass
- g_µ-2 region ruled out for masses from 0.8 to 5 GeV

Phys. Rev. Lett. 130, 231801 (2023)

Paper in preparation

γ/ϕ_3 : power of Belle + Belle II

- Standard candle in the SM
 - Tree-level only + no theory unc.
- LHCb leads the way: γ=(63.8±3.6)°
 - <u>LHCB-CONF-2022-003</u>

Paper accepted by JHEP

γ/ϕ_3 : power of Belle + Belle II

- Standard candle in the SM
 - Tree-level only + no theory unc.
- LHCb leads the way: $\gamma = (63.8 \pm 3.6)^{\circ}_{B}$
 - <u>LHCB-CONF-2022-003</u>
- Several Belle (711 fb⁻¹) + Belle II measurements (varying sample size) – total O(1 ab⁻¹)
 - $D \rightarrow K_{S}^{0} hh \underline{JHEP 02} (2022) 063$
 - $D \rightarrow K^0_{S} K\pi$ <u>accepted by JHEP</u>
 - $D \rightarrow K_{s}^{0} \pi^{0}$, KK <u>arXiv:2308.05048</u>
 - + Belle-only $D \rightarrow K\pi$ and others
- A few ab⁻¹ will give a good cross check of this SM parameter

Phys. Rev. D 109, 012001 (2024) and Phys. Rev. Lett. 131, 111803 (2023)

$$B \rightarrow K\pi$$
 isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – <u>PRD 59, 113002 (1999)</u>

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

• All inputs measured at Belle II including 'no vertex' time-dependent *CP* asymmetry for $B \rightarrow K^0{}_s\pi^0 - 362 \text{ fb}^{-1}$ sample

Belle II paper in preparation and PRL 131, 111803 (2023)

$$B \rightarrow K\pi$$
 isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – <u>PRD 59, 113002 (1999)</u>

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

• All inputs measured at Belle II including 'no vertex' time-dependent *CP* asymmetry for $B \rightarrow K^0_{S} \pi^0 - 362 \text{ fb}^{-1}$ sample

 $B = (14.2 \pm 0.4 \pm 0.9) \times 10^{-6}$ Large π^{0} efficiency syst.

> $A_{K^0} = -0.01 \pm 0.12 \pm 0.05$ Combination of time-dependent and time-integrated analyses

M. Dorigo's talk – WG5

Belle II paper in preparation and <u>arXiv:2305.07555</u> (accepted PRL)

- $B \rightarrow K\pi$ isospin sum rule
- Relates these various penguin modes to give a null test of the SM with O(1%) SM precision <u>PRD 59, 113002 (1999)</u>

$$I_{K\pi} = (-3 \pm 13 \pm 5)\%$$

Agrees with SM. Competitive with WA: $(-13 \pm 11)\%$.

Large π^0 efficiency syst.

 $A_{K^0} = -0.01 \pm 0.12 \pm 0.05$ Combination of time-dependent and time-integrated analyses

4) Lepton flavour/universality violation and rare decays

Measurement of R(X)

- Inclusive ratio $R(X) = \frac{BF(B \to X\tau\nu)}{BF(B \to Xl\nu)}$
 - A complementary alternative to R(D^(*))
- Hadronic-tagging method with a 189 fb⁻¹ Belle II sample

Measurement of R(X)

- Inclusive ratio $R(X) = \frac{BF(B \to X\tau\nu)}{BF(B \to Xl\nu)}$

 - A complementary alternative to $R(D^{(*)})$
- Hadronic-tagging method with a 189 fb⁻¹ Belle II sample
- Use missing-mass squared and lepton momentum to isolate signal above $B \rightarrow Xlv$ background
- Background templates calibrated to control samples and sidebands

 Background templates calibrated to control samples and sidebands

arXiv:2311.14647 [hep-ex]

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Background validation example

- An example of a difficult background is charmless $B^+ \rightarrow K^+ K_L^0 K_L^0$, where K_L^0 mesons escape detection
 - has an order of magnitude larger BF than signal

arXiv:2311.14647 [hep-ex]

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Background validation example

- An example of a difficult background is charmless $B^+ \rightarrow K^+ K_L^0 K_L^0$, where K_L^0 mesons escape detection
 - has an order of magnitude larger BF than signal
- Dedicated studies $B^+ \rightarrow K^+ K^0_S K^0_S$ show good modelling
 - generous systematics assigned
- Similar studies for $B^+ \rightarrow K^+ n \bar{n}, B^+ \rightarrow K^+ K_L^0 K_S^0$

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Systematic uncertainties

Source	Correction	Uncertainty type	Uncertainty size	Impact on σ_{μ}
Normalization of $B\bar{B}$ background		Global, 2 NP	50%	0.88
Normalization of continuum background		Global, 5 NP	50%	0.10
Leading <i>B</i> -decays branching fractions	_	Shape, 5 NP	O(1%)	0.22
Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1 NP	20%	0.49
p -wave component for $B^+ \to K^+ K^0_{\rm S} K^0_{\rm L}$	q^2 dependent $O(100\%)$	Shape, 1 NP	30%	0.02
Branching fraction for $B \to D^{(**)}$		Shape, 1 NP	50%	0.42
Branching fraction for $B^+ \to n\bar{n}K^+$	q^2 dependent $O(100\%)$	Shape, 1 NP	100%	0.20
Branching fraction for $D \to K_L X$	+30%	Shape, 1 NP	10%	0.14
Continuum background modeling, BDT_c	Multivariate $O(10\%)$	Shape, 1 NP	100% of correction	0.01
Integrated luminosity	_	Global, 1 NP	1%	< 0.01
Number of $B\bar{B}$		Global, 1 NP	1.5%	0.02
Off-resonance sample normalization	—	Global, 1 NP	5%	0.05
Track finding efficiency	—	Shape, 1 NP	0.3%	0.20
Signal kaon PID	p, θ dependent $O(10 - 100\%)$	Shape, 7 NP	O(1%)	0.07
Photon energy scale	—	Shape, 1 NP	0.5%	0.08
Hadronic energy scale	-10%	Shape, 1 NP	10%	0.36
$K_{\rm L}^0$ efficiency in ECL	-17%	Shape, 1 NP	8%	0.21
Signal SM form factors	q^2 dependent $O(1\%)$	Shape, 3 NP	O(1%)	0.02
Global signal efficiency	_	Global, 1 NP	3%	0.03
MC statistics	· · · ·	Shape, 156 NP	O(1%)	0.52

Post-fit distributions

Upper: full fit region

Lower: most sensitive region

arXiv:2311.14647 [hep-ex]

Cross checks

arXiv:2311.14647 [hep-ex]

- Multiple checks of the analyses stability, including tests dividing data into approximately equal sub-samples. Reported here as measured branching fraction divided by SM expectation, $\mu = B/B_{SM}$.
- Control measurement of $B^+ \rightarrow \pi^+ K^0$ decay

Slide from S. Glazov EPS