Prospects of Dynamic Radius Jet Clustering Algorithm at the LHC

Tousik Samui

Trends in Astroparticle and Particle Physics (TAPP) 2024 IMSc, Chennai

Based on <u>JHEP 04 (2023) 019</u> [2301.13074]

B. Mukhopadhyaya, TS, R. K. Singh

25-Sep-2024

Motivation

- High-energy colliders are crucial in advancing particle physics.
- Jets appearing from quark/gluons, are a common phenomenon in these colliders.
- High-energy machines can also produce fat jets from the boosted heavy particles.
- In-depth study of these varied objects are crucial for exploring both SM and BSM scenarios.
- However, the current fixed radius jet algorithms (kt, anti-kt, C/A) are inadequate to capture these features in a single go.
- Variable radius jet clustering algorithm would thus be an important asset in our toolbox.

Jets at Collider: QCD jets

Single colored particle gives rise to a bunch of collimated hadrons.

G. Sterman and S. W.

G. Sterman and S. Weinberg, Phys. Rev. Lett. 39 (1977) 1436.

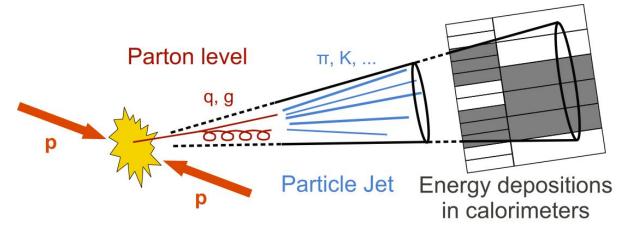
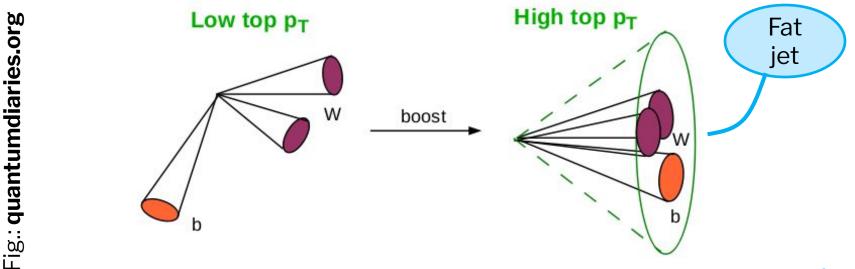
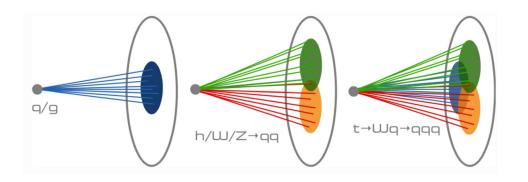



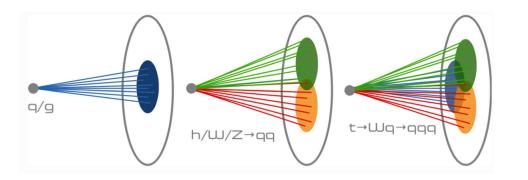
Image: CMS, CERN

Jets at Collider: Fat jets


If a heavy particle (W, Z, top, etc.), are boosted enough, their decay products also come within a small solid angle.

These jets, called fat jets, are wider than traditional QCD jets.

Fig: <u>Eur</u>


Jet Clustering Algorithm

Be it a narrow QCD jet or a boosted fat jet, one needs an algorithm to find it by clustering the collimated sprays of hadrons.

Fig: <u>Eur. Phy</u>

Jet Clustering Algorithm

Be it a narrow QCD jet or a boosted fat jet, one needs an algorithm to find it by clustering the collimated sprays of hadrons.

Jet Clustering Algorithm

Sequential Recombination Algorithm

Name

CA

KT

AK

Take all the four-momenta in a list, calculate all possible d_{ij} and d_{iB}

$$d_{ij} = \min \left(p_{T_i}^{2p}, p_{T_j}^{2p} \right) \Delta R_{ij}^2, \qquad \Delta R_{ij} = \left(y_i - y_j \right)^2 + \left(\phi_i - \phi_j \right)^2$$

$$d_{iB} = p_{T_i}^{2p} R_0^2 \qquad \qquad p \qquad 0 \qquad 1 \qquad -1$$

- 1. Find the minimum of the d_{ij} and d_{iB} .
- 2. Minimum is a d_{ij} : combine $i,\ j$ and add to the list, remove i and j, return to step 1
- 3. Minimum is a d_{iB} : declare i to be a jet (final), remove it from the list, return to step 1.
- 4. Stop when list gets empty.

Sequential Recombination Algorithm

Take all the four-momenta in a list, calculate all possible d_{ij} and d_{iB}

$$d_{ij} = \min\left(p_{T_i}^{2p}, p_{T_j}^{2p}\right) \Delta R_{ij}^2,$$

$$d_{ij} = \min(p_{T_i}^{2p}, p_{T_i}^{2p}) \Delta R_{ij}^2, \qquad \Delta R_{ij} = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

$$d_{iB} = p_{T_i}^{2p} R_0^2$$

p	0	1	-1
Name	CA	KT	AK

- Find the minimum of the d_{ii} and d_{ii} .
- Minimum is a d_{ij} : combine i, and add to the list, remove i and j, return to step 1
- Minimum is a d_{iB} : declare i to be a jet (final), remove it from the list, 3. return to step 1. Fixed
- Stop when list gets empty.

Review: Eur. Phys. J. C 67 (2010) 637.

radius R_0

Dynamic Radius Jet Algorithm

$$d_{ij} = \min\left(p_{T_i}^{2p}, p_{T_j}^{2p}\right) \Delta R_{ij}^2, \quad \Delta R_{ij} = \left(y_i - y_j\right)^2 + \left(\phi_i - \phi_j\right)^2$$

$$d_{iB} = p_{T_i}^{2p} \left(R_0 + \sigma_i\right)^2$$
 Radius modifier
$$R_d^2$$

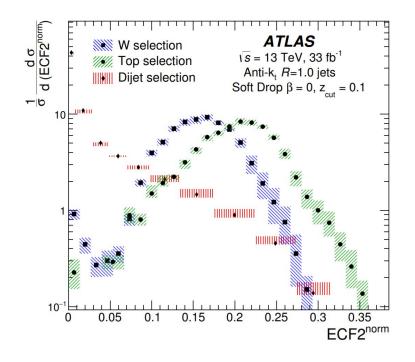
$$\sigma_i^2 = \frac{\sum_{a < b} p_{T_a} p_{T_b} \Delta R_{ab}^2}{\sum_{a < b} p_{T_a} p_{T_b}} - \left(\frac{\sum_{a < b} p_{T_a} p_{T_b} \Delta R_{ab}}{\sum_{a < b} p_{T_a} p_{T_b}}\right)^2; \ a, b \in i$$

$$\langle \Delta R^2 \rangle$$

AK: <u>video</u>.

DR-AK: <u>video</u>.

p	0	1	-1
Algorithm	DR-CA	DR-KT	DR-AK


Why σ_i ?

- $\sigma_i^2 = \langle \Delta R^2 \rangle \langle \Delta R \rangle^2$ (standard deviation) measures fuzziness of a jet.
- > Fat jets are expected to be fuzzier than QCD jets
- Energy Correlation Function:

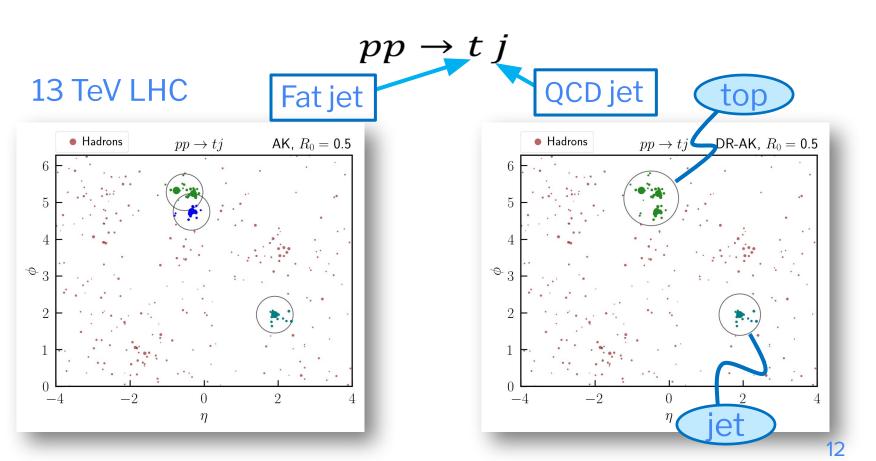
$$ECF2_{\beta} = \sum_{a < b} p_{T_a} p_{T_b} \Delta R_{ab}^{\beta}$$

ECF: JHEP 06 (2013) 108.

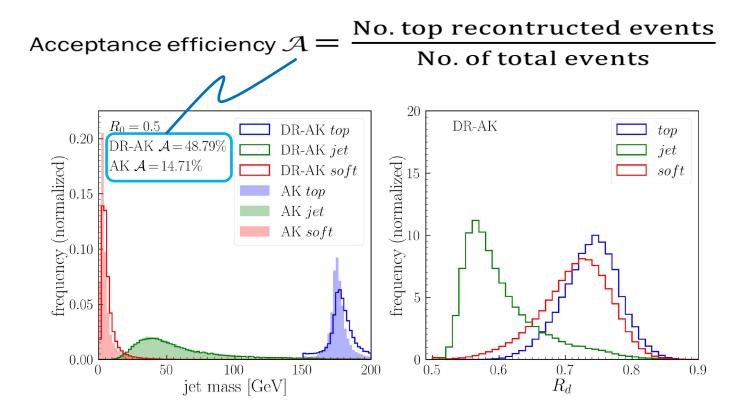
Fig: JHEP 08 (2019) 033.

Implementation and tools

Implemented within the framework of **FastJet3** as a plugin.


GitHub: https://github.com/tousiksamui/DynamicRJetAlgorithm

$$\begin{array}{c} pp \to tj \\ pp \to b'b' \to tW^- \bar{t}W^+ \end{array}$$


- Model: SARAH + SPheno
- Event generation: MadGraph5 + Pythia8

13 TeV LHC

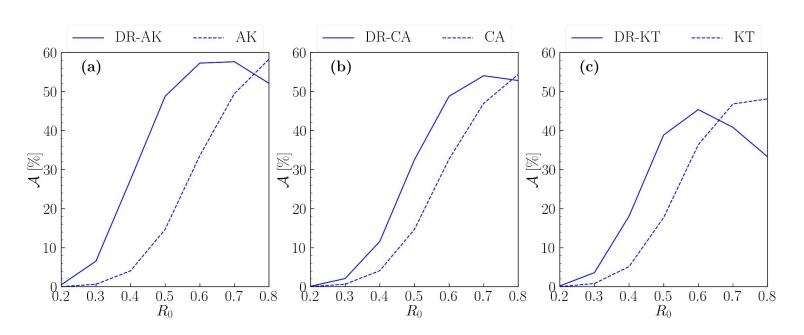
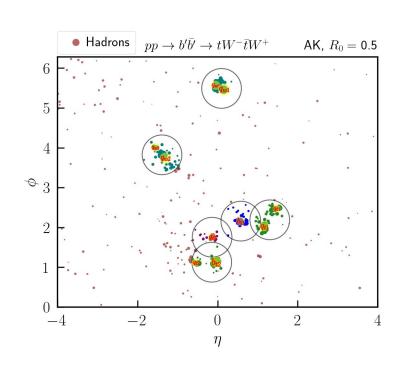

Illustration (SM): $pp \rightarrow tj$

Illustration (SM): $pp \rightarrow tj$

Illustration (SM): $pp \rightarrow tj$



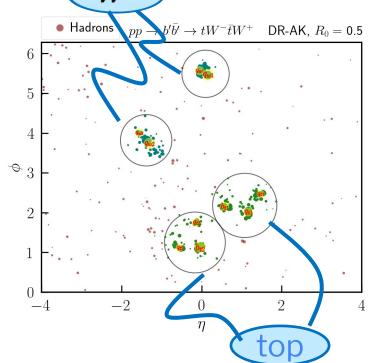
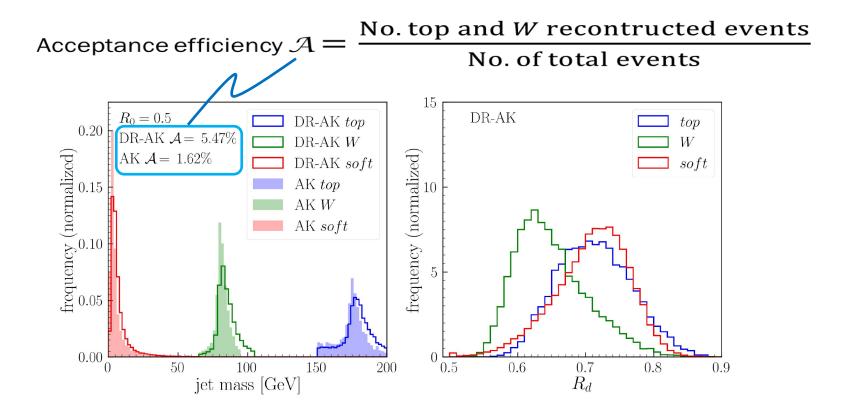

Acceptance efficiency (\mathcal{A}) vs. initial radius (R_0)

Illustration (BSM): $pp \to b' \bar{b'} \to t W t W$


 $pp \rightarrow b' \overline{b'} \rightarrow tWtW$

13 TeV LHC

Illustration (BSM): $pp \rightarrow b' \bar{b'} \rightarrow tWtW$

Summary

- There is a need for variable radius jet algorithm. Current fixed-radius algorithms are inadequate for this purpose.
- We have proposed a jet algorithm with dynamic radius.
- Discussed the idea, implementation this algorithm and utility
- Applicable in scenarios with differently sized jets.
- The usefulness of the DR jet algorithm has presented in two process at 13 TeV LHC.
- It has implications in the study of heavy objects (top/W/Z/H).
- Other studies related to this algorithm are ongoing.

Outlook

- Phenomenological implications especially in the BSM context has also been proposed to be studied.
- Prospects in object based studies: q/g discrimination, dark jets, W/Z/top jets.
- Prospects in theoretical, phenomenological, developmental aspects of this algorithm.
- Studies with **Open Data**:
 - A detailed study of pileup and jet energy resolution calibration (JERC) with open data has been proposed.
 - Assessing performance of the algorithm in handling boosted objects or heavy flavour jet.
 - Study of boosted objects with this new algorithm would be useful.

