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II. PRELUDE TO LOCALIZATION

The fermionic action for the aliphatic model with link fields connecting left and right chiral fermions

of consecutive groups is given by

S =
NX

j=1

Z
d4x{ ̄ (i�µDµ) +

�
Lj�j,j+1Rj+1 + Lj+1�j+1,jRj

�

+ LjMRj + h.c.} (1)

Hence, the new physics Lagrangian for this moose diagram and connectivity of matter fields at IR

limit becomes

LNP = Lkin �
nX

i,j=1

LiHi,jRj + h.c. (2)

with

Hi,j =✏i�i,j � ti(�i+1,j +K�i,j+1) (3)

with ✏i 2 [2t, 2t+W ]. Mass matrix for the fermionic fields in this lagrangian with K = 1, in the basis

(L1, L2, ...LN , R1, R2, ...RN ) is a symmetric anti-diagonal block matrix

Mmass =

2

4 0 MA

MA 0

3

5

Matrix MA elements are given as MA,ij = < LiMARj > and it takes the form

MA =

2

6666666664

✏1 �t 0 ... 0

�t ✏2 �t ... 0

0 �t ✏3 ... 0

... ... ... ... ...

0 ... ... �t ✏N

3

7777777775

Eigenvalues of matrix MA in the limiting case ✏i = a 8 i are given by[? ],[? ],[? ]

�k = a� 2
p
t2 cos

k⇡

N + 1
, (4)

with a = e/t and b = c = -1. Or it can be rearranged as

�k = a+ 2
p
bc cos

k⇡

n+ 1
,
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X X X X X

G1 G2 G3 G4 GN

R1 R2 R3 R4 RN

L1 L2 L3 L4 LN

m1 m2 m3 m4 mN

p1 p2 p3

p4

pN-1

r1 r2 r3

r4

rN-1

Deconstruction Model

X

Right Handed Weyl Fermion

Left Handed Weyl Fermion

Coupling between Left handed Li and right handed

 Weyl fermion Ri+1

pi

Coupling between Left handed Li+1 and right handed

 Weyl fermion Ri

ri
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Plot 3 - Histogram for mass distribution of hierarchical mass produced by lattice with 2%

randomness in ✏i for 25000 runs [Left]. Heat density plot for success ratio for values of W (TeV) and

↵ (% randomness in ✏i) [Right].

For Heat density plot, the values of parameters considered were t = 0.39 TeV, W = [3.95, 4.05]

TeV, and ✏i = [W/2, W/2 + ↵*W/100].

Apart from considering randomness in sites, one can consider the case when the hopping terms are

disordered. In this case the magnitude of hopping terms are randomly drawn from a given interval

such as ti 2 [0 , t] 8 i. This lattice with randomized hopping terms is also capable of producing the

hierarchical mass since the localization criteria is satisfied by disorderliness and rest of mechanism

works the same as in earlier case. Statistical analysis reveals that log of mass distribution is Gaussian

in nature for this case as in randomized site case. One can adjust parametric values to make sure

the mean of this distribution matches with the experimentally observed mass value with a certain

standard deviation.

One such case is t = 0.5 TeV, W = 2.884 TeV, N = 8 with site coupling strength W/2 and hopping

term strength t/2 with 2% randomness. It gives a distribution with mean value 0.0495 eV and a good

Gaussian fit as shown below in plot 4. The success ratio for randomized hopping terms in Anderson

lattice with above set of parameters is around 38% in 3� range.

For Heat density plot, the values of parameters considered were t = 0.50 TeV, W = [2.86, 2.90] TeV,

✏i = W/2 8 i and ti 2 [t/2, t/2 + ↵*t/100]. ↵ is the randomness parameters i.e., percentage of

randomness in the value of hopping terms about the mean value of t/2.

For t=1, W =  3,  N = 8 ϵi ∈ [0,W]

W ≫ t

Strong localisation limit 
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III. ANDERSON LOCALIZATION

Anderson localization phenomenon gives localized eigenmodes in disordered systems. The extent of

localization depends on the connectivity and amount of disorderliness introduced in the system [4].

The localization of a mode on a particular site results in it having a small component on other lattice

sites. This natural emergence of a small component can be used in field theories to produce a small

coupling between two fields.

A. Nathaniel Craig and Dave Sutherland

N. Craig and Sutherland have used this phenomenon of Anderson localization to naturally produce

exponentially suppressed couplings between two fields [13]. They have assumed randomness in the

fundamental parameters which in lattice picture corresponds to site and hopping strength. The

Hamiltonian used is the nearest neighbour tight binding Anderson Hamiltonian.[4]

Hi,j = ✏i�i,j + t(�i+1,j + �i,j+1) (9)

with ✏i site terms drawn randomly from [0 , W] and t is the hopping strength. For W � t, we

have a strong localization scenario, that is, the modes are highly localized on sites and the localization

length for small t is given by [13]

L
�
m2

i , t,W
�
⇠

✓
ln

W

2t
� 1

◆�1

For W ⌧ t, it is weak localization scenario. Localization length in this case is given by [13]

L
�
m2

i , t,W
�
⇠

8
><

>:

�
t
W

� 2
3 if

2t�|2t�mm2
⌦|

w
t
3 t

1
3

⌧ 1,

24
W 2

⇣
4t2 �

�
m2

n � 2t
�2⌘

otherwise.

Once the modes are localized, their component on some other site gives rise to a small coupling

strength, which is exponentially small in disordered systems and hence can be used for the production

of hierarchical mass.

8

For large sparse Hamiltonians, one can find the spectral density using the Bray-Rodgers equation

[? ] or Edwards and Jones formulation [? ]. Following are plots of orthonormalized eigenvectors �i

obtained from ⇤i using the Gram-Schmidt process for various cases.

Fig.4 (A) - Mass modes of Non-Local lattice having uniform sites ✏i = 2W, g = 1, N = 8 and

increasing(left), constant(middle) and decreasing(right) non-neighbouring couplings with b = 0.7, 1

and 2 respectively.

Fig.4 (B) - Mass modes of Non-Local lattice with random site terms ✏i 2 [-2W, 2W] with W = 5, g

= 1/4, b = 2 and N = 8.

In this graph, 1) for case b > 1 highly localized modes are found for W � g/b, 2) for case b = 1,

highly localized modes are found for W � g, and 3) for case b < 1, highly localized modes are found

for either W � g/bN�1 or g/b < W ⌧ g/bN�1.

1. Mixed Local and Non-local structures

The Petersen graph we are considering belongs to a broader collection of graphs known as the

’generalized Petersen’ graph denoted by GP(n, k). The graphs we are considering have k = n/2

chosen. The number of vertices and edges that GP(n, n/2) have are 2n and 2n + n/2 respectively.

The Hamiltonian of this graph is used in (??) to account for the new physics Lagrangian. Each vertex

in the graph will translate to one left & one right BSM Weyl fermion and an edge between any two

vertices or nodes will lead to a coupling between Weyl fermions of opposite chirality of those two
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LCW = Lkin −
n

∑
i=1

ψ̄LiHijψRj
+ H . C

Hij = mi δij + qimi δi+1,j

Zero Mode  ! 

Localisation possible for regions 
of parameters (no large hierarchies) 

Tiny Dirac neutrino masses ! 
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The first-order corrections to the eigenvalues of the coupled matrix in perturbation limit are given by

��i =

⌧
⇤(i)

����
�M2

m2

����⇤
(i)

�
= p2f(q1, q2, . . . , qn) = O(p2)

⇤i are eigenvectors of unperturbed matrix and f(q1, q2, . . . , qn) denotes function f coming from de-

pendence of components of eigenvectors ⇤i on variables (q1, q2, . . . , qn). This gives leading order

corrections to be of the second order with respect to p. Since non-zero eigenvalues of MM † and M †M

are identical, left fermions will also have perturbative corrections of the same order. The perturbative

eigenvector analysis follows similar to shown in the appendix in [5].

The KK mass spectrum for Clockwork gears and their coupling strength with SM neutrino is shown

in plot 1(A). For this scenario n = 20 gears are considered with mi = 1 TeV and qi = -3 -i ⇥0.5.

Plot 1(A) - Left plot shows the mass distribution and the right plot shows the coupling strength for

the general clockwork scenario with n = 20 clockwork fermions.

Plot 1(B) demonstrates the localization of di↵erent eigenvectors in CW fields on di↵erent sites. The

Yukawa coupling strength to SM neutrino y is considered to be 0.1.

Plot 1(B) - Left plot shows the absolute value of left-handed mass eigenvectors in terms of CW

fields and the right plot for right-handed mass eigenbasis with y = 0.1.

B. Both sided Clockwork

This scenario is an extension of CW Hamiltonian where fermions of both chiralities are connected to

each other for neighbouring matter fields. The Hamiltonian is diagrammatically represented in fig.3

Hong, Kurup, Perelstein 
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LCW = Lkin −
n

∑
i=1

ψ̄LiHijψRj
+ H . C Hij = m(δij + qiδi+1,j + q′ δi,j+1)

8

where

xn�j
k = �2cos

k⇡

n+ 1
xn�j+1
k � xn�j+2

k , j = 2, 3, ...n (8)

with

xn�1
k =

a� 2bcos k⇡
n+1

b
xnk (9)

xnk represents the nth component for kth eigenvector and can be chosen as per normalization condition.

The eigenvector for 0-mode is given by ⇤0. For n = 13, ai = a - 0.05⇥i and bi = 2 + 0.5⇥i, we get

suppression of the order of 10�12. To compare it with uniform CW, it took n = 40 for a = 1 and b =

2 to produce suppression of this order.

C. Both sided Clockwork

This scenario is an extension of CW Hamiltonian where fermions of both chiralities are connected

to each other for neighbouring matter fields. The connection is diagrammatically represented in fig.3.

Fig.3 - CW with both side interactions.

The Lagrangian for the Goldstone bosons in this theory at IR can be written as

L =�
f2

2

NX

j=0

@µU
†
j @

µUj +
m2f2

2

N�1X

j=0

⇣
U †
jU

q1
j+1 + h.c.

⌘

+
m2f2

2

N�1X

j=1

✓
U †
jU

q
0
1+ h.c.

j�1

◆
+

m2f2

2

N�1X

j=1

✓
U †
j+1

q1U q
0
1+ h.c.

j�1

◆
(10)

Tiny Dirac neutrino masses ! 

Zero Mode  ! 

Localisation 
possible for 

regions 
of 

parameters 
(no large 

hierarchies) 

Deconstruction Model 

Linear Moose 
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Plot 2(A) - Left plot shows the mass distribution and the right plot shows the coupling strength for

the general clockwork scenario with n = 20 clockwork fermions.

Plot 2(B) demonstrates the localization of di↵erent eigenvectors in CW fields on di↵erent sites. The

Yukawa coupling strength to SM neutrino y is considered to be 0.1.

Plot 2(B) - Left plot shows the absolute value of left-handed mass eigenvectors in terms of CW

fields and the right plot for right-handed mass eigenbasis with y = 0.1.

III. NON-LOCAL CLOCKWORK MODELS

A. NNN CW

In non-local CW theory space, matter fields corresponding to groups which are not adjacent in the

moose diagram also have link fields connecting them. These connections are formulated in the model

by modifying the underlying Hamiltonian in the Lagrangian of the model. The Hamiltonian for NNN

(next to nearest neighbour) CW is given by

Hi,j = mi�i,j + q(1)i mi�i+1,j + q(2)i �i+2,j (18)

LNP = Lkin �

nX

i

miLiRi �

nX

i

miq
(1)
i LiRi+1 �

n�1X

i

miq
(2)
i LiRi+2 + h.c. (19)

with i 2 {1, 2, ...n} and j 2 {1, 2, ...n+ 1}.
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Fig.5 - Product of coupling of neutrinos with L1 and Rn for t=1 and W = 5.

Following are plots showing the comparison of the minimum components an eigenvector has on a site

for random clockwork’s 0-mode and lightest mode in disorders Models for various scenarios.

Fig.6 - Figure shows the Log of minimum component 0-mode of CW and lightest mode of disorder

models achieved with n = 10 sites.

For RCW (random clockwork) randomness is considered in both site terms mis and nearest coupling

terms qis as per [Gero ref] with mi , qi 2 [-m-q , m+q] for m=1 and q=5. For the disordered model

three cases are considered i) randomness only in site terms ✏i 2 [2t, 2t+2W] with ti =
t

2 , ii) randomness

only in coupling terms ti 2 [-t , t] with ✏i = W , and iii) randomness in both site and coupling terms

✏i 2 [2t, 2t+2W] and ti 2 [-t , t] with t = 1 and W = 5.

Fig.7 - Figure shows the Log of minimum component 0-mode of CW and lightest mode for disorder

models achieved with varying sites.

Extremely efficient localisation with randomness/disorder  

Singh and vempati, 2023 

6

We now turn our attention to the impact of underlying geometries in the strong localization regime.

We compare three cases all of which show very similar results except for the di↵erence in the magnitude

of Lloc. In the first case, we show the spectrum of the mass modes with and without assuming

randomness for the local Hamiltonian given by eq.(??).

Fig.2 - Mass modes of Local lattice with uniform sites ✏i = W & ti = t (left) and random sites ti = t

& ✏i 2 [2W, -2W] (right) for W = 4 and t = 1/4 with N = 8 sites..

In Figure 2, we plot the first eight mass modes (N=8) of the local Hamiltonian eq.(??) without the

site terms being random (left) and when the site terms are random (right). As can be seen from the

y-axis in the figure, in the uniform case all the components are delocalized. Whereas in the Anderson

case, all the modes are localized. Parameters ✏i and ti are chosen respectively to be W & 1/4 for

uniform and [-2W, 2W] & 1/4 for random case with W = 4 and N = 8 sites..

The theory space described by Lagrangian (??) with Hi,j (??) is local in nature as the lattice has

coordination number 2 with adjacent sites linked to each other.

Following [? ], we consider a non-local lagrangian with Hamiltonian containing decaying hopping

terms given by [? ]

(Hlong-range )j,k = ✏j�j,k +
g

b|j�k| (1� �j,k) , (6)

The toy model scalar field lagrangian inspired by non-local Hamiltonian (??) is

L+ =
1

2

NX

i=1

(@µ⇡i)
2 � 1

2

NX

j=1

✏j⇡
2
j �

1

2

N�1X

i=1

NX

j=i+1

g

bj�i
(⇡i + ⇡j)

2 (7)

As shown by Trooper and Fans in [? ], this long-range Hamiltonian has good localization due to

randomness in lattice for b >1, a decaying strength parameter. Hence it can be implemented to

produce localized fermionic modes. A corresponding Fermionic lagrangian is given by

Llong�range = LKin �
NX

i,j=1

Li✏i,jRj �
NX

i,j=1

Li
g

b|i�j| (1� �i,j)Rj + h.c.

All modes 
 localised 

Gero Gresdroff  
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The suppression of coupling produced will be more than CW for the following set of parameters

c 2 R^
✓✓

b < 0 ^

✓✓
a < 0 ^

a3 � 1

2ab
< c <

a3 + 1

2ab

◆
_

✓
a > 0 ^

a3 + 1

2ab
< c <

a3 � 1

2ab

◆◆◆
_

✓
b > 0 ^

✓✓
a < 0 ^

a3 + 1

2ab
< c <

a3 � 1

2ab

◆
_

✓
a > 0 ^

a3 � 1

2ab
< c <

a3 + 1

2ab

◆◆◆

For n = 3, a = 1 and b = 2, CW produces 10�1 order suppression whereas this model with c = 0.24,

produces 10�3 order suppression, 2 orders smaller than ordinary CW.

To compare with CW, it took n = 40 gears with a = 1, q = 2 to produce eV mass from the TeV

scale but here it can be done with n = 20 for b = 2 and c = 0.15. For this scenario, this model is

more e�cient than CW for c 2 [0, 0.539] [[0.936112, 0.936908], there are two more intervals of smaller

length.

III. NON-LOCAL AND FRACTAL GEOMETRY THEORY SPACES

A. NNN CW

In non-local CW theory space, matter fields corresponding to groups which are not adjacent in the

moose diagram also have link fields connecting them. These connections are formulated in the model

by modifying the underlying Hamiltonian in the Lagrangian of the model. The Hamiltonian for NNN

(next to nearest neighbour) CW is given by

Hi,j = ai�i,j + bi�i+1,j + di�i+2,j (14)

Fig.4 - CW with NNN (Next to Nearest Neighbour) interactions.
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moose diagram also have link fields connecting them. These connections are formulated in the model

by modifying the underlying Hamiltonian in the Lagrangian of the model. The Hamiltonian for NNN

(next to nearest neighbour) CW is given by

Hi,j = ai�i,j + bi�i+1,j + di�i+2,j (14)

Fig.4 - CW with NNN (Next to Nearest Neighbour) interactions.

Zero Mode  ! 

Localisation possible 
for regions 

of parameters (no 
large hierarchies)

Tiny Dirac neutrino masses ! 
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Plot 3(A) - Left plot shows the mass distribution and the right plot shows the coupling strength for

the NNN clockwork scenario with n = 20 clockwork fermions.

Plot 3(B) demonstrates the localization of di↵erent eigenvectors in CW fields on di↵erent sites. The

Yukawa coupling strength to SM neutrino y is considered to be 0.1.

Plot 3(B) - Left plot shows the absolute value of left-handed mass eigenvectors in terms of CW

fields and the right plot for right-handed mass eigenbasis with y = 0.1.

B. Completely Non-local CW

In this scenario, we will consider fully non-local theory spaces i.e, theory spaces where the matter

fields of each group are connected via link fields to the matter fields of every other group. The

underlying Hamiltonian considered is rectangular, implying that the number of left chiral fermions is

not equal to the number of right chiral fermions. Firstly we will retain the CW nature of theory space

as shown in fig.4. Hamiltonian for this extension can be written as

Hi,j =
n+1X

k=1

ai,k�i,j�k+1 (27)

with i 2 {1, 2, ...n} and j 2 {1, 2, ...n+1}. Using the CW notation to write the new physics Lagrangian,

one gets

LNP = Lkin �

nX

i=1

miLiRi �

nX

i=1

miq
(1)
i LiRi+1 �

n�1X

i=1

miq
(2)
i LiRi+2 �

n�2X

i=1

miq
(3)
i LiRi+3

�

n�3X

i=1

miq
(4)
i LiRi+4 + . . . �

n�(n�1)X

i=1

miq
(n)
i LiRi+n + h.c.

= Lkin �

nX

i=1

miLiRi �

nX

k=1

n�k+1X

i=1

miq
(k)
i LiRi+k + h.c. (28)

Singh and vempati, 2024 
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We now turn our attention to the impact of underlying geometries in the strong localization regime.

We compare three cases all of which show very similar results except for the di↵erence in the magnitude

of Lloc. In the first case, we show the spectrum of the mass modes with and without assuming

randomness for the local Hamiltonian given by eq.(??).

Fig.2 - Mass modes of Local lattice with uniform sites ✏i = W & ti = t (left) and random sites ti = t

& ✏i 2 [2W, -2W] (right) for W = 4 and t = 1/4 with N = 8 sites..

In Figure 2, we plot the first eight mass modes (N=8) of the local Hamiltonian eq.(??) without the

site terms being random (left) and when the site terms are random (right). As can be seen from the

y-axis in the figure, in the uniform case all the components are delocalized. Whereas in the Anderson

case, all the modes are localized. Parameters ✏i and ti are chosen respectively to be W & 1/4 for

uniform and [-2W, 2W] & 1/4 for random case with W = 4 and N = 8 sites..

The theory space described by Lagrangian (??) with Hi,j (??) is local in nature as the lattice has

coordination number 2 with adjacent sites linked to each other.

Following [? ], we consider a non-local lagrangian with Hamiltonian containing decaying hopping

terms given by [? ]

(Hlong-range )j,k = ✏j�j,k +
g

b|j�k| (1� �j,k) , (6)

The toy model scalar field lagrangian inspired by non-local Hamiltonian (??) is

L+ =
1

2

NX

i=1

(@µ⇡i)
2 � 1

2

NX

j=1

✏j⇡
2
j �

1

2

N�1X

i=1

NX

j=i+1

g

bj�i
(⇡i + ⇡j)

2 (7)

As shown by Trooper and Fans in [? ], this long-range Hamiltonian has good localization due to

randomness in lattice for b >1, a decaying strength parameter. Hence it can be implemented to

produce localized fermionic modes. A corresponding Fermionic lagrangian is given by

Llong�range = LKin �
NX

i,j=1

Li✏i,jRj �
NX

i,j=1

Li
g

b|i�j| (1� �i,j)Rj + h.c.

7

with ✏i 2 [-2W, 2W]. Dirac mass matrix for long-range Hamiltonian with fermionic fields Li, Rj is

given by

Mlong�range =

2

6666666664

✏1
g
b

g
b2 ... g

bN�1

g
b ✏2

g
b ... g

bN�2

g
b2

g
b ✏3 ... g

bN�3

... ... ... ... ...

g
bN�1 ... ... g

b ✏N

3

7777777775

Fig.3 - Long-range non-local lattice representation for N = 10 sites.

The eigenvalues and corresponding eigenvectors for matrixMlong�range in uniform limiting case , b ! 1

and ✏i ! ✏ is given by

�1 = ✏+ (N � 1)g

�i = ✏� g, with i 2 2, 3, ...N (8)

⇤1 =
1p
N

{1, 1, 1, ...1}

⇤2 =
1p
2
{�1, 1, 0, ...0}

⇤3 =
1p
2
{�1, 0, 1, ...0}

...

⇤N =
1p
2
{�1, 0, 0, ...1} (9)

(3a) Completely Non-local

8

For large sparse Hamiltonians, one can find the spectral density using the Bray-Rodgers equation

[? ] or Edwards and Jones formulation [? ]. Following are plots of orthonormalized eigenvectors �i

obtained from ⇤i using the Gram-Schmidt process for various cases.

Fig.4 (A) - Mass modes of Non-Local lattice having uniform sites ✏i = 2W, g = 1, N = 8 and

increasing(left), constant(middle) and decreasing(right) non-neighbouring couplings with b = 0.7, 1

and 2 respectively.

Fig.4 (B) - Mass modes of Non-Local lattice with random site terms ✏i 2 [-2W, 2W] with W = 5, g

= 1/4, b = 2 and N = 8.

In this graph, 1) for case b > 1 highly localized modes are found for W � g/b, 2) for case b = 1,

highly localized modes are found for W � g, and 3) for case b < 1, highly localized modes are found

for either W � g/bN�1 or g/b < W ⌧ g/bN�1.

1. Mixed Local and Non-local structures

The Petersen graph we are considering belongs to a broader collection of graphs known as the

’generalized Petersen’ graph denoted by GP(n, k). The graphs we are considering have k = n/2

chosen. The number of vertices and edges that GP(n, n/2) have are 2n and 2n + n/2 respectively.

The Hamiltonian of this graph is used in (??) to account for the new physics Lagrangian. Each vertex

in the graph will translate to one left & one right BSM Weyl fermion and an edge between any two

vertices or nodes will lead to a coupling between Weyl fermions of opposite chirality of those two
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For large sparse Hamiltonians, one can find the spectral density using the Bray-Rodgers equation

[? ] or Edwards and Jones formulation [? ]. Following are plots of orthonormalized eigenvectors �i

obtained from ⇤i using the Gram-Schmidt process for various cases.
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= 1/4, b = 2 and N = 8.

In this graph, 1) for case b > 1 highly localized modes are found for W � g/b, 2) for case b = 1,

highly localized modes are found for W � g, and 3) for case b < 1, highly localized modes are found

for either W � g/bN�1 or g/b < W ⌧ g/bN�1.

1. Mixed Local and Non-local structures

The Petersen graph we are considering belongs to a broader collection of graphs known as the

’generalized Petersen’ graph denoted by GP(n, k). The graphs we are considering have k = n/2

chosen. The number of vertices and edges that GP(n, n/2) have are 2n and 2n + n/2 respectively.

The Hamiltonian of this graph is used in (??) to account for the new physics Lagrangian. Each vertex

in the graph will translate to one left & one right BSM Weyl fermion and an edge between any two

vertices or nodes will lead to a coupling between Weyl fermions of opposite chirality of those two

b=0.7, W = 4 
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vertices. The new physics Lagrangian for this Petersen structure for general even n is given by

LPetersen = LKin �
NX

i,j=1

Li✏i,jRj �
N/4X

i,j=1

Li
g

b|i�j|
�
�i,j+N/4 + �i+N/4,j

�
Rj

�
N/2X

i,j=1

Li
g

b|i�j|
�
�i,j+N/2 + �i+N/2,j

�
Rj �

NX

i,j=N/2+1

Li
g

b|i�j| (�i,j+1)Rj

�
NX

i,j=N/2+1

Li
g

b|i�j| (�i+1,j)Rj + h.c. (10)

with N + 1th site is identified with N/2 + 1th site and ✏i 2 [-2W, 2W]. In the Lagrangian formulation,

we have considered the decaying non-local hopping terms. Dirac mass matrix for this Petersen Hamil-

tonian for N = 8 with fermionic fields Li, Rj can be obtained by weighting the elements of adjacency

and degree matrices of the graph

MPetersen =

2

66666666666666666664

✏1 0 g
b2 0 g

b4 0 0 0

0 ✏2 0 g
b2 0 g

b4 0 0

g
b2 0 ✏3 0 0 0 g

b4 0

0 g
b2 0 ✏4 0 0 0 g

b4

g
b4 0 0 0 ✏5

g
b 0 g

b3

0 g
b4 0 0 g

b ✏6
g
b 0

0 0 g
b4 0 0 g

b ✏7
g
b

0 0 0 g
b4

g
b3 0 g

b ✏8

3

77777777777777777775

Fig.5 - Generalized Petersen graph for 8 (left) and 48 (right) vertices with k = n/2 and n = 4 and

24 respectively.
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b|i�j|
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�
�i,j+N/2 + �i+N/2,j
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Fig.5 - Generalized Petersen graph for 8 (left) and 48 (right) vertices with k = n/2 and n = 4 and

24 respectively.
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The eigenvalues and corresponding unnormalized eigenvectors for matrix MPetersen in uniform limiting

case , b ! 1 and ✏i ! ✏ is given by

�i =
n1

2

⇣
�
p
5g � g + 2✏

⌘
,
1

2

⇣
�
p
5g � g + 2✏

⌘
,
1

2

⇣
�
p
5g + 3g + 2✏

⌘
,
1

2

⇣p
5g � g + 2✏

⌘
,
1

2

⇣p
5g � g + 2✏

⌘
,

1

2

⇣p
5g + 3g + 2✏

⌘
,
1

2

⇣
�
p
13g � g + 2✏

⌘
,
1

2

⇣p
13g � g + 2✏

⌘o

⇤1 =

⇢
0,

1

2

⇣p
5 + 1

⌘
, 0,

1

2

⇣
�
p
5� 1

⌘
, 0,�1, 0, 1

�

⇤2 =

⇢
1

2

⇣p
5 + 1

⌘
, 0,

1

2

⇣
�
p
5� 1

⌘
, 0,�1, 0, 1, 0

�

⇤3 =

⇢
1

2

⇣
�
p
5� 1

⌘
,� 2p

5� 1
,
1

2

⇣
�
p
5� 1

⌘
,� 2p

5� 1
, 1, 1, 1, 1

�

⇤4 =

⇢
0,

1

2

⇣
1�

p
5
⌘
, 0,

1

2

⇣p
5� 1

⌘
, 0,�1, 0, 1

�

⇤5 =

⇢
1

2

⇣
1�

p
5
⌘
, 0,

1

2

⇣p
5� 1

⌘
, 0,�1, 0, 1, 0

�

⇤6 =

⇢
1

2

⇣p
5� 1

⌘
,

2p
5 + 1

,
1

2

⇣p
5� 1

⌘
,

2p
5 + 1

, 1, 1, 1, 1

�

⇤7 =

⇢
2p

13 + 3
,� 2p

13 + 3
,
1

2

⇣p
13� 3

⌘
,� 2p

13 + 3
,�1, 1,�1, 1

�

⇤8 =

⇢
� 2p

13� 3
,

2p
13� 3

,
1

2

⇣
�
p
13� 3

⌘
,

2p
13� 3

,�1, 1,�1, 1

�
(11)

In general, this mass matrix will not have a 0-mode though one can produce a 0-mode by carefully

choosing the site term in a uniform limiting case. In a random site scenario, 0 mode is rarely present.

The following figure shows plots of normalized eigenvectors �i obtained from eigenvectors ⇤i.

Fig.6 - Mass modes of Petersen graph with uniform sites (left) and random sites(right) for N = 8,

W = 5, g = 1/4 and b = 1.4.

As is evident from Fig.6 (left) plot, for b > 1 in the uniform scenario, the mass matrix with the

Petersen structure produces half modes which are localized on one-half of the total number of nodes
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II. PRELUDE TO LOCALIZATION

The fermionic action for the aliphatic model with link fields connecting left and right chiral fermions

of consecutive groups is given by

S =
NX

j=1

Z
d4x{ ̄ (i�µDµ) +

�
Lj�j,j+1Rj+1 + Lj+1�j+1,jRj

�

+ LjMRj + h.c.} (1)

Hence, the new physics Lagrangian for this moose diagram and connectivity of matter fields at IR

limit becomes

LNP = Lkin �
nX

i,j=1

LiHi,jRj + h.c. (2)

with

Hi,j =✏i�i,j � ti(�i+1,j +K�i,j+1) (3)

with ✏i 2 [2t, 2t+W ]. Mass matrix for the fermionic fields in this lagrangian with K = 1, in the basis

(L1, L2, ...LN , R1, R2, ...RN ) is a symmetric anti-diagonal block matrix

Mmass =

2

4 0 MA

MA 0

3

5

Matrix MA elements are given as MA,ij = < LiMARj > and it takes the form

MA =

2

6666666664

✏1 �t 0 ... 0

�t ✏2 �t ... 0

0 �t ✏3 ... 0

... ... ... ... ...

0 ... ... �t ✏N

3

7777777775

Eigenvalues of matrix MA in the limiting case ✏i = a 8 i are given by[? ],[? ],[? ]

�k = a� 2
p
t2 cos

k⇡

N + 1
, (4)

with a = e/t and b = c = -1. Or it can be rearranged as

�k = a+ 2
p
bc cos

k⇡

n+ 1
,

-independent of geometry of the Chain

- Some universal features for neutrino masses and mixing. 
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B. Neutrino Masses and Flavor Mixing In Strong Localisation Regime

Once the localized modes are produced we need to couple SM uncharged leptons with new fields to

produce hierarchical mass.

1. Dirac Scenario

One Flavor Case - In the Dirac scenario, neutrino mass is obtained by assuming both left ⌫L and

right-handed ⌫R neutrino existence. Left-handed and right-handed neutrinos are Yukawa coupled to

di↵erent site Right R1 and Left-handed Ln BSM fields respectively in Lagrangian (??) with SM Higgs

field i.e.,

Lint. = Y1⌫̄LHR1 + Y2⌫̄RHLn + h.c.

with Y1 and Y2 are Yukawa couplings of the O(1). The Dirac Mass matrix in basis

{⌫L,�L,1,�L,2, ...,�L,n} and {⌫R,�R,1,�R,2, ...,�R,n} is given by

Mfermion =

2

6666666666664

0 v11 v21 v31 ... vn1

v1n �1 0 0 ... 0

v2n 0 �2 0 ... 0

v3n 0 0 �3 ... 0

... ... ... ... ... ...

vnn 0 0 0 ... �n

3

7777777777775

vi1 is the coupling of neutrino with �Ri and vin is the coupling with �Li after SSB. The smallest mass

mode for this matrix is given by

m0 ⇡
nX

i=1

vi1v
i
n

�i
/

nX

i=1

v2
e�

n
Ln

�i

v is the expectation value of the Higgs field. Other mass modes are slight perturbations about their

initial eigenvalues �is.

We find for ✏i/2 2 [0, t+W], ti 2 [-t, t] and n = 7 with t=1 and W = 5, it produces O(1)eV masses

from TeV scale.

Dirac Case 
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Fig.8 - KK modes mass spectrum (left) and product of couplings of neutrinos with L1 and Rn

(right) for t = 1 and W = 5 with n = 7.

3-Flavor Case - Extension to the 3-flavour case of the above new physics Lagrangian can be done

as,

LNP = Lkin �
nX

i,j=1

L↵
i H

↵,�
i,j R�

j + h.c. (12)

with the interaction between di↵erent flavours of SM and BSM fields given by

LInt. = Y a,↵⌫̄aLHR↵
1 + Y b,� ⌫̄bRHL�

n + h.c.

where a, b, ↵ and � are flavor index.

For the below scenario, N = 3 and big randomness range i.e., ✏i 2 [W,3W] and ti = t with W =

5 and t = 0.02 are considered with flavour diagonal left-handed SM neutrino Yukawa couplings Y a,↵

but non-diagonal right-handed neutrino Yukawa coupling Y b,� with o↵-diagonal elements being 10%

of O(1) diagonal elements in Fig. 9(B) left and diagonal Y b,� with o↵-block H↵,� (”Dirac mixing”)

considered in Fig. 9(B) right.

Fig.9(A) - Figure shows histogram(left) for 100000 runs and median of 1000 runs(right) for 100

cases with W = 5 and N = 3.
O(1) eV neutrino masses 

(Demonstration)  
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Fig.9(B) - Figure shows the histogram of mixing angle for 5000 runs produced in local theory space

for neutrino-like mixing (left) and Dirac-like mixing(right).

The o↵-block NP flavor mixing H↵,� is

H↵,� = Y ↵,�
Y ukawaH

The produced mass plots and mixing plots for neutrino and Dirac-like mixing for non-local and Pe-

tersen Hamiltonian are given in Appendix ??.

TABLE III: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

⌫R Flavour Mixing Small mix Small mix Small mix

Dirac Flavour Mixing Large mix, Anarchical Large mix, Anarchical Large mix, Anarchical

In this scenario, results are independent of underlying graph connectivity.

2. Majorana Scenario

One Flavor case - In the Majorana scenario, The lagrangian with Majorana BSM field for the

local case is given by [? ]

LNP = Lkin � tL̄1 �
nX

i,j=1

LiHi,jRj �W  + h.c. (13)

with

Hi,j = ✏i�i,j + t(�i+1,j + �i,j+1) (14)

and interaction between BSM fields and SM fields is given by

Mixing angles are anarchical. 
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Fig.9(B) - Figure shows the histogram of mixing angle for 5000 runs produced in local theory space

for neutrino-like mixing (left) and Dirac-like mixing(right).

The o↵-block NP flavor mixing H↵,� is

H↵,� = Y ↵,�
Y ukawaH

The produced mass plots and mixing plots for neutrino and Dirac-like mixing for non-local and Pe-

tersen Hamiltonian are given in Appendix ??.

TABLE III: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

⌫R Flavour Mixing Small mix Small mix Small mix

Dirac Flavour Mixing Large mix, Anarchical Large mix, Anarchical Large mix, Anarchical

In this scenario, results are independent of underlying graph connectivity.

2. Majorana Scenario

One Flavor case - In the Majorana scenario, The lagrangian with Majorana BSM field for the

local case is given by [? ]

LNP = Lkin � tL̄1 �
nX

i,j=1

LiHi,jRj �W  + h.c. (13)

with

Hi,j = ✏i�i,j + t(�i+1,j + �i,j+1) (14)

and interaction between BSM fields and SM fields is given by

16

di are the diagonal entries of matrix DN⇥N . Other mass modes are slight perturbations about their

initial eigenvalues �is. For ✏ 2 [2t-W, 2t+W] with N = 8 and W = 5, t = 1
4 , we get O(eV ) mass from

TeV fields.

3 Flavor case - BSM Lagrangian for ↵ flavours of fermions is given by:

LNP = Lkin � t↵,�L̄↵
1 

� �
nX

i,j=1

L↵
i H

↵,�
i,j R�

j �W↵� ↵ � + h.c. (15)

Here the Majorana field  ↵ is coupled to the first mode of left-handed fermion of the � flavour. With

H↵,�
i,j = ✏↵,�i �i,j + t↵,�(�i+1,j + �i,j+1) (16)

The interaction term between SM neutrinos of di↵erent flavours and Anderson fermions is given by:

LInt. = �Y a,↵H̃L̄a
LR

↵
N + h.c. (17)

La
L is the ath generation SM lepton doublet. Here neutrinos are coupled to the last mode of right-
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Fig.10(A) - Figure shows histogram(left) for 100000 runs and median of 1000 runs(right) for 100

cases.
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Fig.10(B) - Figure shows the histogram of mixing angle for 10000 runs produced in local theory

space for Majorana neutrino mixing (left) and Dirac-like mixing(right).

The produced mass plots and mixing plots for neutrino and Dirac-like mixing for non-local and Pe-

tersen Hamiltonian are given in Appendix ??.

TABLE IV: Comparison of Local, Non-local and Petersen Graph for strong localization

Mixing Type Local Non-local Petersen

 Majorana Mixing Small mix,L Small mix, L Small mix, L

Dirac Flavour Mixing Large mix, random Large mix, random Large mix, random

In this scenario, results are independent of underlying graph connectivity.

III. WEAK DISORDER: ROLE OF GEOMETRY

A. Dirac Scenario

1. Local Lattice -

Fig.11 - Figure shows the median of 1000 runs(left) for 10 cases and histogram of mixing angle for 2000 runs

produced for neutrino-like mixing W = 0.1 (middle) and Dirac-like mixing W = 0.1 & ti = t (right).

Hierachial neutrino masses with suppression but anarchical mixing angles.  
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Hierarchial neutrino masses with anarchic mixing angles  
is a feature of the strong localisation regime independent of the  

type of geometry, couplings (non-local, partially local etc.) 

In the case of strong disorder in couplings (t) parameter,  ,  
geometry does play a mild role, but mixing angles are  

mostly anarchic,  except one !. 

t ≫ ϵ
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Role of Geometry : Weak Disorder 

Dirac Scenario : Local Lattice (only nearest neighhour)

ϵ ≲ t
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Mixing angles are “localised”. 
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In this scenario, the underlying lattice is local i.e., only neighbouring sites have non-zero couplings

between them. The site terms are considered to have randomness but the randomness is microscopic

compared to the magnitude of hopping terms. The Lagrangian is the same but the parameters

considered and their ranges chosen are di↵erent. The chosen values are tabulated at the end of the

section for all of the three cases taken into consideration here. We also find for symmetric neutrino

mixing Yukawa matrix with y1 = 0.4, y2 = 0.7, y3 = 0.5, we get the SM neutrino mixing angles in

the Inverted Hierarchy of neutrino masses. For non-symmetric Yukawa coupling matrix with Dirac

mixing PMNS matrix is produced by y12 = 0.5, y13 = 0.4, y23 = 0.5, y21 = 0.1, y32 = 0.7, y31 = 0.2

with Normal Hierarchy

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

= 0.5, y13 = 0.4, y23 = 0.3, y21 = 0.5, y32 = 0.9, y31 = 0.5 with Inverted Hierarchy.

2. Non-Local Lattice -

In this scenario, the underlying lattice is completely non-local with decaying random hopping terms.

Fig.12 - Figure shows the median of 1000 runs(left) for 10 cases and histogram of mixing angle for

2000 runs produced for neutrino-like mixing W = 0.1 (middle) and Dirac-like mixing W =

0.01(right).

We also find for symmetric neutrino mixing Yukawa matrix with y1 = 0.6, y2 = 0.5, y3 = 0.8, we

get the SM neutrino mixing angles in the Inverted Hierarchy of neutrino masses. For non-symmetric

Yukawa coupling matrix with Dirac mixing PMNS matrix is produced by y12 = 0.4, y13 = 0.3, y23 =

0.1, y21 = 0.2, y32 = 0.6, y31 = 0.3 with Normal Hierarchy and y12 = 0.1, y13 = 0.3, y23 = 0.2, y21 =

0.5, y32 = 0.3, y31 = 0.7 with Inverted Hierarchy.

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

= 0.4, y13 = 0.3, y23 = 0.7, y21 = 0.2, y32 = 0.6, y31 = 0.8 with Inverted Hierarchy
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Fully non-local 

Partially  non-local 
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3. Petersen Lattice -

In this scenario, the underlying lattice has generalized Petersen graph networking with randomized

site and coupling terms.

Fig.13 - Figure shows the median of 1000 runs(left) for 10 cases and histogram of mixing angle for

2000 runs produced for neutrino-like mixing W = 0.1 (middle) and Dirac-like mixing W = 0.05 & ti

= t(right).

For non-symmetric Yukawa coupling matrix with Dirac mixing PMNS matrix is produced by y12 =

0.3, y13 = 0.2, y23 = 0.5, y21 = 0.9, y32 = 0.2, y31 = 0.7 with Inverted Hierarchy

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

= 0.3, y13 = 0.2, y23 = 0.1, y21 = 0.3, y32 = 0.6, y31 = 0.4 with Inverted Hierarchy.

In all these cases on increasing the hopping magnitude, the mass of the smallest mode produced also

increases and it also stabilizes the localization of mixing angles i.e., the density of the histogram around

specific values increases.

TABLE V: Parameters considered for above scenario unless mentioned are b = 1.2 and g = t = 10.

Scenario N ✏i ti

Local 8 [2t-W, 2t+W] t
2

Non-local 8 [2t-W, 2t+W] t
2

Petersen 8 [2t-W, 2t+W] t
2

TABLE VI: Comparison of Local, Non-local and Petersen Graph for weak localization

Mixing Type Local Non-local Petersen

⌫R Flavour Mixing large mix,L large mix, L large mix, L

Dirac Flavour Mixing Large mix, localized Large mix, localized Large mix, localized

In this scenario, results are dependent on underlying graph connectivity.
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For the Majorana case, we get similar “ localisation’’

20

B. Majorana Scenario

1. Local Lattice -

In this scenario, the underlying lattice is local i.e., only neighbouring sites have non-zero couplings

between them. For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is

Fig.14 - Figure shows the median of 100 runs(left) for 20 cases and histogram of mixing angle for 2000 runs

produced for Dirac-like mixing (right) and Majorana neutrino mixing(middle).

produced by y12 = 0.4, y13 = 0.4, y23 = 0.1, y21 = 0.2, y32 = 0.2, y31 = 0.3 with Inverted Hierarchy.

2. Non-Local Lattice -

In this scenario, the underlying lattice is completely non-local with decaying random hopping terms.

For non-symmetric Yukawa coupling matrix with neutrino mixing PMNS matrix is produced by y12

Fig.15 - Figure shows the median of 100 runs(left) for 20 cases and histogram of mixing angle for 2000 runs

produced for Dirac-like mixing (right) and Majorana neutrino mixing(middle).

= 0.4, y13 = 0.3, y23 = 0.1, y21 = 0.2, y32 = 0.5, y31 = 0.1 with Normal Hierarchy.
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Phenomenology 
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VI. PHENOMENOLOGY SIGNATURES

A. Branching Ratio

One of the biggest constraints that come to a model of this kind is the flavour-changing constraints.

From SM, the leptonic flavour change branching ratio for the process µ ! e� is ⇡ 10�55 ⌧ 10�50.

So, if there is any contribution to such processes from these NP interactions, the theoretical BR for

this model will deviate from the SM BR and hence will be a defining signature for BSM models. The

current experimental bounds (MEG bounds) on BR(µ ! e�) is < 4.2 ⇥ 10�13 [? ]. The expression

for the branching ratio with these models is given by [? ]

B(µ ! e�) =
3↵

32⇡

�
�0v
�2

where

�0v = 2
X

i

U⇤
eiUµig

✓
m2

i

M2
W

◆

with

g(x) =

Z 1

0

(1� ↵)d↵

(1 · ↵) + ↵⌧
[2(1� ↵)(2� ↵) + ↵(1 + ↵)x]

Fig.29 - Figure shows one of the 1-loop level Feynman diagrams with BSM heavy neutrinos

contributing to the charged lepton flavour change (l↵ ! l��).
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Fig.30 - Figure shows density plot of the median of 100 runs for Log10 of BR (µ ! e�) for neutrino

mixing (left) and Dirac mixing (right) in the local case for various values of coupling strength factor

Y and W in weak localization scenario. The black line in the right plot is the current experimental

bound from MEG.

The scenario considered for this plot was local weak site disorder with ✏i 2 [W � 2t,W + 2t], t = 0.1,

ti = t/2, N = 8 and Dirac and Neutrino mixing Yukawa couplings Y ↵,� matrix as

Yyukawa = Y

2

6664

1 0.5 0.4

0.5 1 0.3

0.5 0.9 1

3

7775

where Y is a real number that modifies the strength of the full mixing matrix. As can be seen from

the branching ratio plot, the neutrino mixing scenario can explain all the PMNS mixing values and

hierarchical small mass of neutrinos O(0.1)eV and at the same time also easily avoid the current or

near future MEG experiment bounds. On the other hand, the Dirac mixing scenario has constraints

put on the parameter space with natural values and future MEG experiments will further restrict this

parameter space.

Non-local scenario with ✏i 2 [W-2t, W+2t], ti = t = 0.1, N = 8, Y = 8 for Dirac mixing and Y =

1 for neutrino with varying W and the hopping decaying factor b and same coupling matrix as in the

local case. In this scenario, we find that in contrast to the local scenario, the neutrino mixing flavour

violation modes are within the grasp of future MEG or other FC detection experiments as is shown

in the plot below-left.

Constraints become weaker for 
 non-local 

 and partially local case. 
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Outlook 

Randomness in couplings can lead to  
exponentially hierarchal couplings. 

In the regime of strong coupling, the geometry of the mass chains  
does not matter significantly. They predict hierarchal neutrino masses  

and anarchical mixing angles for both Dirac or Majorana scenarios.  

In the weak coupling regime, geometry does play a role and  
can be chosen carefully to ``localise” the mixing angles. 

Experimental signatures become weaker for  
non-local /partially non-local cases compared to local case.
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Back Up
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B. Neutrino Masses and Flavor Mixing In Strong Localisation Regime

Once the localized modes are produced we need to couple SM uncharged leptons with new fields to

produce hierarchical mass.

1. Dirac Scenario

One Flavor Case - In the Dirac scenario, neutrino mass is obtained by assuming both left ⌫L and

right-handed ⌫R neutrino existence. Left-handed and right-handed neutrinos are Yukawa coupled to

di↵erent site Right R1 and Left-handed Ln BSM fields respectively in Lagrangian (??) with SM Higgs

field i.e.,

Lint. = Y1⌫̄LHR1 + Y2⌫̄RHLn + h.c.

with Y1 and Y2 are Yukawa couplings of the O(1). The Dirac Mass matrix in basis

{⌫L,�L,1,�L,2, ...,�L,n} and {⌫R,�R,1,�R,2, ...,�R,n} is given by

Mfermion =

2

6666666666664

0 v11 v21 v31 ... vn1

v1n �1 0 0 ... 0

v2n 0 �2 0 ... 0

v3n 0 0 �3 ... 0

... ... ... ... ... ...

vnn 0 0 0 ... �n

3

7777777777775

vi1 is the coupling of neutrino with �Ri and vin is the coupling with �Li after SSB. The smallest mass

mode for this matrix is given by

m0 ⇡
nX

i=1

vi1v
i
n

�i
/

nX

i=1

v2
e�

n
Ln

�i

v is the expectation value of the Higgs field. Other mass modes are slight perturbations about their

initial eigenvalues �is.

We find for ✏i/2 2 [0, t+W], ti 2 [-t, t] and n = 7 with t=1 and W = 5, it produces O(1)eV masses

from TeV scale.
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Non Local and Two Dimensional Graphs  
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Apart from retaining the clockwork nature of left-right chiral fields in non-local extensions, we can

consider both-sided non-local CW extensions too. Hamiltonian for this scenario is given by [8]

(Hlong-range )j,k = aj�j,k +
b

r|j�k| (1� �j,k) , (33)

The Hamiltonian considered is long-range hopping strength decaying Hamiltonian. Dirac mass matrix

for this Hamiltonian in {L1, L2, ...LN} and {R1, R2, ....RN+1} basis is given by

Mlong�range =

2

66666666666664

a1
b
r

b
r2

b
r3 . . . b

rn

b
r a2

b
r

b
r2 . . . b

rn�1

b
r2

b
r a3

b
r . . . b

rn�2

...
...

...
. . .

. . .
...

b
rn�2

b
rn�1 . . . an�1

b
r

b
r2

b
rn�1

b
rn�2

b
rn�3 . . . an

b
r

3

77777777777775

n⇥n+1

For n = 2, in the limiting case, right-hand fermionic eigenvalues are

�i =
n
0,

�b
p
16a2r6 + 16abr4 + b2r4 + 2b2r2 + b2 + 2a2r4 + 3b2r2 + b2

2r4
,

b
p
16a2r6 + 16abr4 + b2r4 + 2b2r2 + b2 + 2a2r4 + 3b2r2 + b2

2r4

o

with 0-mode eigenvector given by

⇤0 =

⇢
�

ab� b2

a2r2 � b2
,�

abr2 � b2

r (a2r2 � b2)
, 1

�
(34)

Hence as b ! ar, the suppression of 0-mode on the last site increases.

Fig.5 - Completely Non-local interaction for n = 9 with both ways interaction. The distance

between the two sites is not parallel to their coupling strength.
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