THE STRANGE CASE OF TWIN NEUTRON STAR

Ritam Mallick Department of Physics, IISER Bhopal

TAPP 2024, IMSc Chennai, September 25-27, 2024

NEUTRON STAR: PROPERTIES

Theorized by Baade and Zwicky in 1934

Discovered around 30 years later as Pulsars in 1967 (Hewish and Bell)

Properties of NS

- Mass 0.7 2.4 solar mass
- Radius 10 15 km
- Period ms sec
- Density at core $10^{14} 10^{15}$ gm/cc
- Magnetic field 10^{15} G (max at surface)

NEUTRON STAR: THEORY

TOV Equation

NEUTRON STAR: EOS

Current Knowledge

Two extremes

We are confident about the matter properties at the two extremes

Low density: Chiral effective field theory

High density: perturbative QCD

A Kurkela, Quark Confinement Conf, Stavanger

NEUTRON STAR: EOS

Agnostic EOS

Bounds: Low density \implies CMF model

High density pQCD

In between randomizing speed of sound as a function of chemical potential (0-1)

Piecewise linear extrapolation to generate continuous curve

$$n(\mu) = n_{CET} \exp\left(\int_{\mu_1}^{\mu} \frac{d\mu'}{\mu' c_s^2(\mu')}\right)$$
$$p(\mu) = P_o + \int_{\mu_1}^{\mu} d\mu' n(\mu')$$

Annala et al., PRX 12, 011058, 2022

$$c_s^2(\mu) = \frac{(\mu_{i+1} - \mu) c_{s,i}^2 + (\mu - \mu_i) c_{s,i+1}^2}{\mu_{i+1} - \mu_i}$$

NEUTRON STAR: M-R

Test the theory of high-density matter with NS observation

Huanchen Hu et al, MNRAS 497, 3118 (2020)

MS0

15

16

GS2

NEUTRON STAR: TWINS

NEUTRON STAR: TWINS

0.00

FILTERING TWINS

Universal relations

$$y = a_0 + a_1 \log \bar{\lambda} + a_2 (\log \bar{\lambda})^2 + a_3 (\log \bar{\lambda})^3 + a_4 (\log \bar{\lambda})^4$$

	a_0	a_1	a_2	a_3	a_4
\bar{Q}	-0.01653	0.16145	0.08245	-0.01876	0.001352
Ī	0.64633	0.06582	0.0477	-0.00311	7.5214×10^{-5}

For normal 1st-order PT, deviation depends on density discontinuity

But not much on the point of PT

FILTERING TWINS

Universal relations

UR for Twin EOS

Fractional percentage error

Category I and shows most deviation for massive stars

Category II shows most deviation for intermediate stars

Category III and IV shows most deviation for low mass stars

РΤ FILTERING TWINS 0.30Category I Category II 0.25Category III Universal relations Category IV 0.20 $\nabla^{sem} 0.15$ Maximum deviation with **P**_{PT} 0.10 Category III & IV max deviation 0.05Least category I Breaking of UR depends on PPT РΤ 10^{2} 0.30 Category I P_{PT} [MeV/fm³] Category II 0.25Maximum deviation with discontinuity Category III Category IV 0.20 No such dependence $\sum_{i=1}^{xam} 0.15$ 0.100.050.00 10^{2} 10^{1} 10^{0} 10^{3} $\Delta \epsilon \; [{ m MeV}/{ m fm^3}]$

NEUTRON STAR: BINARIES

NASA/Dana Berry, Sky Works Digital

Gravitational Wave GW170817

GW		GW		
NS + NS	$ \longrightarrow $	HMNS		BH

NS BINARIES

Detection of the inspiral part, before the merger

Not only *GW* but also *sGRB* and *Electromagnetic Signal Multi-messenger signal*

Post-merger signal not detected, expected to have more rich physics

Takami et al., PRL 113, 091104 (2014)

NS: NUMERICAL RELATIVITY

Einstein Equation and Numerical relativity

Numerical Relativity: 3+1 Formalism

Foliate 4-d space-time \implies 3-d spacelike hypersurface

$$ds^{2} = -\alpha^{2}dt^{2} + \gamma_{ij} \left(dx^{i} + \beta^{i}dt \right) \left(dx^{j} + \beta^{j}dt \right)$$
$$g_{ab} = \begin{pmatrix} -\alpha^{2} + \beta_{l}\beta^{l} & \beta_{i} \\ \beta_{j} & \gamma_{ij} \end{pmatrix} = \gamma_{ab} - n_{a}n_{b}$$

$$\begin{array}{l} \gamma_{ab} = g_{ab} + n_a n_b \implies spatial \ metric \\ n^a \implies normal \ vector \\ \beta^i \implies shift \ vector \\ \alpha \implies lapse \ function \end{array}$$

NS: NUMERICAL RELATIVITY

Einstein Equation and Numerical relativity

Evolution Equation

Spatial metric

$$\partial_t \gamma_{ij} = -2\alpha K_{ij} + D_i \beta_j + D_j \beta^i$$

Extrinsic curvature

$$\partial_t K_{ij} = -D_i D_j \alpha + \alpha \left(R_{ij} - 2K_{ik} K^k{}_j + K K_{ij} \right) - 8\pi \alpha \left(S_{ij} - \frac{1}{2} \gamma_{ij} \left(S - \rho \right) \right)$$
$$+ \beta^k D_k K_{ij} + K_{ik} D_j \beta^k + K_{kj} D_i \beta^k$$

GRHD Equations

$$\nabla_{\nu}T^{\mu\nu} = 0 \qquad \nabla_{\nu}(\bar{\rho}U^{\nu}) = 0$$

NEUTRON STAR: BINARIES

Binary Merger

TWIN BINARIES

TWIN BINARIES

We are the Compact Object ASTrophysics (COAST) Research Group

sites.google.com/iiserb.ac.in/coast/home

ENIGMA OF NEUTRON STARS

Probe for High density matter

electron <10⁻¹⁶cm proton (neutron) quark <10⁻¹⁶cm <10⁻¹⁶cm

Dexheimer et al., Universe, 2019

Phase transition in NSs

 $NS \longrightarrow QS/HS$

However, there is still no conclusion

NS: NUMERICAL RELATIVITY

Einstein Equation and Numerical relativity

Extrinsic Curvature

$$K_{ab} = -\gamma_a{}^c \gamma_b{}^a \nabla_c n_d$$
$$= -\nabla_a n_b - n_a a_b$$
$$= -\frac{1}{2} \mathcal{L}_{\mathbf{n}} \gamma_{ab}$$

Constraints Equations

Hamiltonian

 $R + K^2 - K_{ij}K^{ij} = 16\pi\rho$

Momentum $D_j\left(K^{ij} - \gamma^{ij}K\right) = 8\pi S^i$

Source Term

$$\rho = n_a n_b T^{ab}$$
$$S^i = -\gamma^{ij} n^a T_{aj}$$
$$S_{ij} = \gamma_{ia} \gamma_{jb} T^{ab}$$
$$S = \gamma^{ij} S_{ij}$$

