Introduction W Boson Polarization in the SM Performance of proxy variable Hadron Level Templates Application to HL-LHC

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons (updated version of arXiv:2008.04318)

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Trends in Astro-particle and Particle Physics (TAPP)

September 25, 2024

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

글 🖌 🔺 글 🕨

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

EL OQO

Songshaptak De

- W Boson Polarization in the SM
- **3** Performance of proxy variable
- 4 Hadron Level Templates
- **5** Application to HL-LHC

< E High Energy Physics Group. Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

► < ∃ ► = = < < < <</p>

- 2 W Boson Polarization in the SM
- 3 Performance of proxy variable
- **4** Hadron Level Templates
- **5** Application to HL-LHC

シック・日間・エヨヤ エヨヤ シュウ

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Introduction W Boson Polarization in the SM Performance of proxy variable Hadron Level Templates Application to HL-LHC 000 00000 00000

Unitarity of WW scattering in the Standard Model

At high energies, longitudinal gauge-boson scattering would violate unitarity in the absence of the SM Higgs boson or even if the Higgs boson couplings were not precisely the same as those predicted in the SM.

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

Measurement of W boson polarization at LHC

The branching fraction of W boson decaying to hadrons is approximately 68%. It would greatly increase our statistical grasp of the polarization fractions, if we were able to measure the polarization of hadronic W bosons.

Vector Boson Scattering

Songshaptak De

Current Channel: Leptonic

Hadronic Channel: Advantages

- Greater Statistics
- Reconstruction of full kinematics

High Energy Physics Group, Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

EL OQA

2 W Boson Polarization in the SM

3 Performance of proxy variable

- **4** Hadron Level Templates
- **5** Application to HL-LHC

・ 4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 Q Q

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Parton level angular distributions

Figure 1: LEFT: θ_* is the polar angle of W^+ decay products in its rest frame. RIGHT: Boosting to the lab frame can cause energy asymmetry between the up and anti-down quarks

For transversely polarized W boson

$$\mathcal{M}_{\pm} \propto rac{1\mp cos heta_{*}}{\sqrt{2}}$$

For longitudinally polarized W boson

 $sin\theta_*$

High Energy Physics Group, Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

ELE DQQ

Polarization Meaurement

Songshaptak De

The distribution of the W^+ decay rate as a function of its decay polar angle,

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}|\mathrm{cos}\theta_*|} = \mathrm{f_T} \frac{3}{4} (1 + |\mathrm{cos}\theta_*|^2) + \mathrm{f_L} \frac{3}{2} (1 - |\mathrm{cos}\theta_*|^2) \tag{1}$$

where, the transverse polarization fraction f_T and the longitudinal polarization fraction f_L are related by, $f_T + f_L = 1$

High Energy Physics Group, Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

W boson at hadronic level

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シスペ

θ_{op} is a poor proxy variable

θ_{op} is a poor proxy variable

Songshaptak De

< (T) > High Energy Physics Group. Institute of Physics Bhubaneswar

< E

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

▲ E ► E E ● 9 Q @

Proxy Variable p_{θ}

Potential observable in the lab frame at parton-level that can distinguish between longitudinal and transverse W^+ bosons,

$$\cos\theta_* = \frac{\Delta E}{p_w}$$

Construction of a proxy variable at hadron level in the W^+ lab frame,

$$p_{ heta} = rac{|\Delta E^{
m reco}|}{p_W^{
m reco}}$$

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

ELE DOG

- 2 W Boson Polarization in the SM
- **3** Performance of proxy variable
- **4** Hadron Level Templates
- **5** Application to HL-LHC

うかの 世間 ふゆやえばや (雪や)

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Introduction W Boson Polarization in the SM Performance of proxy variable Hadron Level Templates Application to HL-LHC

Construction of templates

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Efficacy of p_{θ}

p_{θ} is a **good proxy** variable for $|cos\theta_*| \lesssim 0.9$

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Songshaptak De

- 2 W Boson Polarization in the SM
- 3 Performance of proxy variable
- **4** Hadron Level Templates
- **5** Application to HL-LHC

High Energy Physics Group, Institute of Physics Bhubaneswar

1D Templates

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

三日 のへの

2D Templates

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Songshaptak De

- 2 W Boson Polarization in the SM
- 3 Performance of proxy variable
- **4** Hadron Level Templates
- **5** Application to HL-LHC

もくらん 世間 ふゆうえんかく (見ている)

High Energy Physics Group, Institute of Physics Bhubaneswar

Event rate for VBS at CMS

Expected WW scattering events + background at 13 TeV LHC with 3000 fb⁻¹ of data QCD Background \sim 55336 events Hadronic boosted W bosons \sim 2164 events Longitudinal W \sim 425 events, Trans-

verse W \sim 1739 events

events

Longitudinal W \sim 1417 events, Transverse W \sim 5797 events

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

Pseudo-Data from 2D Template

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Introduction 000	W Boson Polarization in the	SM Performance of pro	xy variable	Hadron Level Templates	Application to HL-LHC
Results					
	True Values	$\mathcal{L} = 3ab^{-1}$	Reco	nstructed Val	ues
	$f_L = 0.0074$ $f_T = 0.030$ $N_{tot} = 57500$		fL fT Nt	$= 0.0079 \pm 0.008$ = 0.030 \pm 0.010 $= 57784 \pm 240$	2
		$\mathcal{L} = 10ab^{-1}$			
	$f_L = 0.0074$ $f_T = 0.030$ $N_{tot} = 192792$		f _L f _T N _t	$= 0.0075 \pm 0.004$ = 0.030 ± 0.006 tot = 193078 ± 430	5

Transverse polarization fraction can be extracted at 20-30% level in the hadronic decays at HL-LHC.

Longitudinal polarization fraction can not be distinguished from zero.

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

(ロ) (四) (三) (三) (三) (三) (○) (○)

Take-home messages

- A new technique is proposed to measure longitudinal and transverse polarization fraction of hadronic decays of boosted *W* boson
- 2 Introduces a new jet-substructure observable p_{θ} which is a proxy for the decay polar angle of W boson in its rest frame
- **3** Distribution of p_{θ} is sensitive to the polarization of W boson
- **4** p_{θ} has lower reconstruction errors as compared to other proxy
- Helps to measure the transverse W boson polarization fraction in VBS at HL-LHC to within a 20% error
- If longitudinal W boson polarization in VBS is enhanced in a BSM scenario. then this technique maybe useful to detect such new physics

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ● ●

Introduction W Boson Polarization in the SM Performance of proxy variable Hadron Level Templates Application to HL-LHC

Thanks For Your Attention!

Scan for the updated version

High Energy Physics Group, Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

Songshaptak De

Back-up Slide: Error Estimate

Songshaptak De

High Energy Physics Group, Institute of Physics Bhubaneswar

Jet Substructure Methods for Polarization Measurement of Boosted Hadronic W Bosons

24 / 24