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Atmospheric Muon Neutrino vs Antineutrino Flux

Atmospheric neutrinos are produced in the interaction of primary cosmic rays (~90%

protons, ~9% alpha particles, small amount of heavier nuclei) with the air molecules
in the atmosphere, such as Nitrogen and Oxygen.

Depending on the energy of the primary proton, different mesons can be
produced in these interactions:

p + Nitrogen — 1=, 79, K=, Ky, Kg...

These mesons subsequently decay to generate a flux of atmospheric muons and
neutrinos of different flavours.

At low energies, the most copiously produced mesons are charged and neutral

pions, where the charged pions decay before reaching the sea-level (a 10 GeV
pion travels ~ 0.5 km before decaying):
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T — ,u_ﬁu

If the muon energy is less than ~ 2.5 GeV, it also decays within the ~15 km
atmosphere: ,u—l_ N €+V67u
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Atmospheric Muon Neutrino vs Antineutrino Flux

Therefore for energies of order a GeV or so, we expect both charged pion decays to
produce equal number of muon neutrino and muon anti-neutrinos, as long as the
muons decay on their way to the sea-level:
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R, = T O(1), uptoa ~ GeV

Vi

For higher energies, the muons do not decay before reaching sea-level, and the ratio
starts to increase, as more 7T+(ud) are produced comparedto T (ﬂd) in
proton interactions with air molecules, due to valence vs sea quark PDF differences.

At even higher energies, K-mesons are also produced in larger numbers, with more K+(u§)
than K~ (ws) with the following dominant decay modes:

KT — pTv,(64%), n°u"v,(3%), 77’ (21%), 7 "7 7~ (6%), 7 T 7’7’ (2%)

Combining these inputs, we see that the ratio Ryp starts from 1 at low energies,
and then grows at higher energies. Its value, averaged over all zenith angles is
around 1.2 at 10 GeV neutrino energy, 1.4 at 100 GeV, 1.5 at 1 TeV, etc, using the
flux model of Honda et al.



e Fluxes and Flux Ratios

- KAM all direction average

Honda et al, 2015, absolute (anti-)neutrino fluxes

Significant uncertainties in the muon (anti-)neutrino flux ratio
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Atmospheric Neutrino Detection

Although neutrinos are the most abundant cosmic rays at the sea level, their
detection is hard due to small neutrino-nucleon scattering cross-sections.

The cross-section for producing a charged lepton (averaged over neutrino and anti-
neutrino) in a broad energy range is approximately:

o~ 0.5 x 107%cm? x E, (GeV)

. —2_—1
The neutrino flux around 1 GeV energy, summed over all directions is around: lem™ “s

The interaction rate for 1 GeV atmospheric neutrinos is thus of order:

U 0.5 x 107 38¢cm? 6 x 10%2nucleons 3.15 x 107s neutrino interactions
X X X ~ 100

cm?s nucleon kiloton year kiloton year

1

Hence to study the charged current interactions of neutrinos, we need a detector of at
least few kilotons fiducial mass, running for few hundred live days

In addition, to distinguish neutrinos from anti-neutrinos using charged current processes,
we need a detector with an ability to distinguish a charged lepton from an anti-
lepton, possibly with a magnetic field



Atmospheric Muon Neutrino vs Antineutrino: MINOS
experiment

Although the MINOS experiment was operated primarily using a neutrino beam, it
carried out a study of atmospheric neutrinos when the beam was OFF.

The MINQOS far detector had a mass of 5.4 kton, but only around 4 kton fiducial mass
was available for atmospheric neutrino studies.

It had a magnetic field of 1.3 T in the far detector, making neutrino vs anti-neutrino
studies feasible.

Measurements of atmospheric neutrino and antineutrino interactions in the MINOS
Far Detector were made, based on 2553 live-days of data. A total of 2072 candidate
events are observed. These are separated into 905 contained-vertex muons and 466
neutrino-induced rock-muons, both produced by charged-current interactions.

For contained vertex events they reported a ratio of muon neutrino to anti-neutrino of
about 2.2 (with a 10% statistical error) and for neutrino-induced rock muons a ratio of
1.6 (with a 15% statistical error). Energy dependence of this ratio was not reported.

MINOS Collaboration, arXiv:1208.2915



The ATLAS Detector @ LHC: Largest Collider Detector Ever Built
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How much time for neutrino studies using ATLAS?

The LHC beams are not in circulation during the winter months, while the detector and
magnetic fields are ON during most of this period (for cosmic ray studies and detector
alignment and other checks). If around 100 days per year are available with the detector/B-
fields ON, but the LHC beams OFF, then in 10 years, 1000 live-days for neutrino physics

should be feasible. If instead around 60 days/year are available, 15 years will be necessary for
the same statistics.

Neutrinos@ATLAS: F. Vannucci, Petcov & Schwetz (2006), Kopp & Lindner (2007), Wen et al (2024)
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Atmospheric Neutrino induced Muons @ ATLAS detector

TM: Hits in Tracker and Muon Chamber: Necessary for low-energy muons

M: Hits only in Muon Chamber: Works for only high-energy muons
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Eliminating Backgrounds: Cosmic Ray Muons in ATLAS

GMM, 2024
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V5 signal
Down-going cosmic ray muons: cannot mimic down-going contained vertex atmospheric

neutrino signal — cosmic muons first necessarily hit the upper muon chamber, while the signal
muon is generated 7m deeper in the detector at the HCAL.

For the upward going contained-vertex signal with no hits at tracker first (i.e., produced at the
upper HCAL), timing information is necessary from the RPC plates of the muon chamber. The
cosmic muons hit the top-most layer earliest, and conversely for the signal muons. The timing

resolution of RPC’s is around 1.5 ns, and a muon travels the 7m muon chamber in about 23
ns, and the full ATLAS width of 22 m in about 73 ns.



Neutrino-Nucleon Scattering Rates: some more details

At low momentum transfer, there is a quasi-elastic process (nucleon changes type
but does not break up): v/, + N — 4 +p

At slightly higher neutrino energies (a few GeV), resonant inelastic procesges such
as the following are observed: v,, +n — 1+ AT — o +p+w

At higher energies still, neutrino interactions are dominated by the neutrino deep
inelastic scattering process: v, + N(n,p) —u + X

Uy +N(n,p) = p" + X

Formaggio, Zeller, 2013
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Neutrino cross-sections are larger than anti-neutrino cross-sections



Neutrino-Nucleon Deep Inelastic Scattering Rates
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dN,/dE, (GeV™")

Contained Vertex Events at ATLAS cmm, 2024

11 kton-year exposure (1000-live days)
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E, N, [Ny [N, ~/N,
>3GeV [102 |54 |1.89
>5GeV |64 |33 [1.94
> 10 GeV [33 [17 |1.94
>20GeV [17 |8 213

TM: Tracker + Muon Chamber Hits
M: Only Muon Chamber Hits

GMM, 2024 (eV) After rapidity |7| < 2.5 and event selection cuts
Energy N,- | Ny+ | Ny~ /N,+ | Category
3<E,<10 GeV |31 17 | 1.82 Only TM
5 < E,<10GeV |14 |7 2.00 Only TM
E, > 10 GeV 30 15 | 2.00 ™ & M
E, > 20 GeV 15 |7 2.14 ™ & M
Total: £, >3 GeV |63 |32 |1.97




External Upward-going Events at ATLAS

ATLAS Effective Area A ~ 22m x 40m ~ 880 m2

N Rock column of effective
muon range r

Number of nucleons =
Orock X A X1 X Ny

GMM, 2024
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External Upward-going Events at ATLAS
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Summary

The ratio of atmospheric muon neutrinos and anti-neutrinos is an important quantity,
for which there is still a large uncertainty in the prediction of the flux models.

Therefore, it is important to be able to directly measure this quantity in neutrino physics
experiments, as a function of neutrino energy.

However, most neutrino detectors do not distinguish between muon neutrinos and anti-
neutrinos.

Magnetized detectors can discriminate on an event-by-event basis between (anti-)neutrino

induced events by measuring the electric charge of the (anti-)muon: MINOS experiment had
such a detector.

The large collider detector ATLAS at CERN LHC can be used for this purpose during the
periods when the LHC beams are OFF — it is sufficiently heavy for neutrino physics (the

hadron calorimeter weighs 4 kilotons), and finely instrumented to reject cosmic ray muon
backgrounds.

While contained-vertex events are the most striking, upward going outside events have a

larger rate due to the much larger fiducial mass available from the rock-column in the earth
below the detector.



