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Figure 3: Feynman diagram topologies for 1-loop radiative neutrino mass generation with the

Weinberg operator O1 = LLHH. Dashed lines could be scalars or gauge bosons if allowed.

T4-x-i require a discrete Z2 symmetry in addition to demanding Majorana fermions in the loop with

lepton-number conserving couplings. This is difficult to achieve in a field theory, as lepton-number

is necessarily broken by neutrino mass. For example, in topology T4-2-i the scalar connected to

the two Higgs doublets H is necessarily an electroweak triplet and thus its direct coupling to two

lepton doublets L is unavoidable. This coupling induces a type-II seesaw tree-level contribution

to neutrino mass. Similar arguments hold for the other topologies T4-x-i.

1-loop topologies for O′
1 = LLHH(H†H). A similar analysis has been performed for 1-loop topolo-

gies that give rise to the dimension-7 generalized Weinberg operator [101]. Of the 48 possible

topologies, only the eight displayed in Fig. 4 are relevant for genuine 1-loop models. For specific

cases, not all of these eight diagrams will be realized. The three-point vertices can be Yukawa,

gauge or cubic scalar interactions, while the four-point vertices only contain scalar and gauge

bosons.

2-loop topologies for O1 = LLHH. A systematic analysis of 2-loop openings of O1 was performed

in Ref. [102]. Figure 5 displays the topologies identified in this study as able to contribute to

genuine 2-loop models. There are additional 2-loop diagrams – that were termed “class II” – that

have the form of one of the 1-loop topologies of Fig. 3 with one the vertices expanded into a 1-loop

subgraph. They remark the class II topologies may be useful for justifying why a certain vertex
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Figure 2: Minimally opening up the Weinberg operator at tree-level using either exotic massive

fermions or scalars. (a) Type-I seesaw model. The massive exotic particle integrated out to

produce an effective Weinberg operator at low energy is a SM gauge-singlet Majorana fermion, the

right-handed neutrino νR. (b) Type-II seesaw model. The massive exotic is a (1, 3, 1) scalar ∆

coupling to LL and H†H†. It gains a small induced VEV from the latter coupling. (c) Type-III

seesaw model. The massive exotic is a (1, 3, 0) fermion Σ whose middle component mixes with the

left-handed neutrino.

2.2.1 Tree-level seesaw mechanisms

The three familiar seesaw models may be derived in a unified way by opening up the Weinberg

operator O1 at tree level in the simplest possible way, using as the heavy exotics only scalars or

fermions. The available renormalizable interactions are then just of Yukawa and scalar-scalar type.

The opening-up process is depicted in Fig. 2. The type-I and type-III seesaw models are obtained

by Yukawa coupling LH with the two possible choices of (1, 1, 0) and (1, 3, 0) fermions, both of

which can have gauge-invariant bare Majorana masses. The type-II model is the unique theory

obtained from Yukawa coupling the fermion bilinear LL ≡ LcL to a (1, 3, 1) scalar multiplet, which

in turn couples to H†H†, a cubic interaction term in the scalar potential.10 The seesaw effect is

obtained in this case by requiring a positive quadratic term for the triplet in the scalar potential,

that on its own would cause the triplet’s VEV to vanish, but which in combination with the cubic

term induces a small VEV for it.

As is clear from Fig. 2, there are two interaction vertices for all three cases, and there is only

one type of exotic per case. An interesting non-minimal tree-level seesaw model realizing option 4

is obtained by allowing four vertices instead of two, and two exotic multiplets: a (1, 4, −1/2) scalar

that couples to HHH† and a (1, 5, 0) massive fermion that Yukawa couples to the exotic scalar

quadruplet and the SM lepton doublet [82–84]. The resulting model produces the generalized

Weinberg operator O′′
1 = LLHH(H†H)2 which has mass-dimension nine. This model is a kind of

hybrid of the type-II and type-III seesaw mechanisms, because it features both a small induced

VEV for the quadruplet and a seesaw suppression from mixing with the fermion quintuplet.

10Note that the LL ∼ (1, 1, −1) option is irrelevant for tree level mechanisms because it does not produce the

required νcν bilinear.
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Neutrino Masses
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There are several models in literature to explain different mass scale.

Other models also exist to explain the number of generations problem.
- String models
- UED models
- etc



Consider Dirac Masses 
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A deeper heavier structure

With O(1) parameters, leading to


 hierarchial  parameters 



Fractals - Self-similiar objects

(1) - nature 628, 894-900 (2024)

Fractals are self-similar i.e, they have similar properties at different scales.

(2) - nature physics 20, 1421-1428 (2024)
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These vectors do not form the orthonormal basis of null-space, they can be used to form an orthonormal

basis using the Gram-Schmidt process as is written in the appendix. For this set of parameters

the Dirac matrix MFractal maps an n-dimensional Hilbert space to its subspace of n-3 dimensions.

Alternatively, this set of parameters will have swapping symmetries in Fractal Lagrangian for a certain

basis. For f > 1, there is a localization of these 0-modes. As the number of iterations m increases,

the number of nodes in the graph increases and hence 0-mode gets bigger localization. The following

figure shows the diagrammatic nomenclature.

Fig.3 - Deconstructed Fermions on Sierpiński Graph. This particular labelling of sites has no

relevance over other possible labellings.

Other Eigenvectors of the system for MFractalM
†
Fractal are given using the perturbative analy sis.

The matrix is written as the sum of two symmetric matrices.

MFractalM
†
Fractal

b2
= M0 +MPert

with

6
“inspiration”


CT Hill - 0210076

- Self-similar

- Non-integer dimensions

- often formed by recursive process

- found in nature such as coastline, snowflake

- useful in various domains such as bio1, quantum computing2 etc.



-localisation of the zero modes !!!

Example with 15 vertices : 
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These vectors do not form the orthonormal basis of null-space, they can be used to form an orthonormal

basis using the Gram-Schmidt process as is written in the appendix. For this set of parameters

the Dirac matrix MFractal maps an n-dimensional Hilbert space to its subspace of n-3 dimensions.

Alternatively, this set of parameters will have swapping symmetries in Fractal Lagrangian for a certain

basis. For f > 1, there is a localization of these 0-modes. As the number of iterations m increases,

the number of nodes in the graph increases and hence 0-mode gets bigger localization. The following

figure shows the diagrammatic nomenclature.

Fig.3 - Deconstructed Fermions on Sierpiński Graph. This particular labelling of sites has no

relevance over other possible labellings.

Other Eigenvectors of the system for MFractalM
†
Fractal are given using the perturbative analy sis.

The matrix is written as the sum of two symmetric matrices.

MFractalM
†
Fractal

b2
= M0 +MPert

with
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Here we will study structure (C) as it produces three left-handed 0-modes which can conveniently be

identified with three flavours of active SM neutrinos (⌫e, ⌫µ, ⌫⌧ ). The explicit Hamiltonian for fractal

in (C) is given by

15X

i,j=1

Hi,j =
15X

i,j=1

mi�i,j +
⇣
b1,7 + b1,8 + b7,4 + b7,9 + b7,8 + b8,5 + b8,9 + b4,9 + b4,11 + b4,12 + b9,5 + b5,13

+ b5,15 + b2,10 + b2,11 + b10,6 + b10,12 + b10,11 + b11,12 + b6,12 + b6,14 + b6,15 + b3,13 + b3,14

+ b3,15 + b13,14 + b14,15
⌘
+ bi$j

where bi$j represents swapping all indices i and j for non-zero bij (bij in the bracket).

The particle content in the fractal Lagrangian has n numbers of left-handed fermions and n numbers

of right-handed fermions with n being the number of vertices in the structure being considered. As

is shown below a certain combination of these left-handed fermions is identified as the active SM

neutrino which on symmetry breaking, with the help of SM Higgs, leads to a small massive neutrino.

Following (8), the full Lagrangian for new physics with 2 iterative transformations of kernel lattice

can be written as

LNP =Lkin �

15X

i,j=1

miLi�i,jRj +m
⇣
L1q1,7R7 + L1q1,8R8 + L7q7,4R4 + L7q7,9R9 + L7q7,8R8 + L8q8,5R5

+ L8q8,9R9 + L4q4,9R9 + L4q4,11R11 + L4q4,12R12 + L9q9,5R5 + L5q5,13R13 + L5q5,15R15+

L2q2,10R10 + L2q2,11R11 + L10q10,6R6 + L10q10,12R12 + L10q10,11R11 + L11q11,12R12 + L6q6,12R12

+ L6q6,14R14 + L6q6,15R15 + L3q3,13R13 + L3q3,14R14 + L3q3,15R15 + L13q13,14R14 + L14q14,15R15

⌘

+mLiqi$jRj + h.c.

In the limiting case mi = m0, and assuming link field �i,j connecting Li to Rj and link field �j,i to

achieve vevs which di↵er by multiplicative factor f , bij will be f i�jb for i > j and b
fj�i for i < j. The

Dirac mass matrix in L and R basis L†
MR is given by

The idea is in “theory space”
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One graph for all the three 
generations !! 

qi,j = f i−jwith

- three zero modes  ⇒ three generations !

   CW Review

2407.13733 - A.Singh

m is universal for all nodes, three zero modes are present for all f values.
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These vectors do not form the orthonormal basis of null-space, they can be used to form an orthonormal

basis using the Gram-Schmidt process as is written in the appendix. For this set of parameters

the Dirac matrix MFractal maps an n-dimensional Hilbert space to its subspace of n-3 dimensions.

Alternatively, this set of parameters will have swapping symmetries in Fractal Lagrangian for a certain

basis. For f > 1, there is a localization of these 0-modes. As the number of iterations m increases,

the number of nodes in the graph increases and hence 0-mode gets bigger localization. The following

figure shows the diagrammatic nomenclature.

Fig.3 - Deconstructed Fermions on Sierpiński Graph. This particular labelling of sites has no

relevance over other possible labellings.

Other Eigenvectors of the system for MFractalM
†
Fractal are given using the perturbative analy sis.

The matrix is written as the sum of two symmetric matrices.

MFractalM
†
Fractal

b2
= M0 +MPert

with
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ℒint = − y1L̄4 H̃ R4 − y2L̄9 H̃ R9 − y3L̄13 H̃ R13 +  h.c. 

Zero Modes on the fractal graph/lattices

0L = { }

0R = { }

For f >1, 0-modes are localized


     on the fractal nodes.

Higgs is coupled as per the localization of modes.



Masses produced as a function of {y,f}

Can masses and flavour mixing be explained 

Charged Leptons

Neutral Leptons

Masses

Mixing

𝒪(1)GeV, 𝒪(0.5)GeV, 𝒪(1)MeV

- No Mixing

Masses

Mixing

𝒪(1)eV, 𝒪(1)eV, 𝒪(0.01)eV

PMNS Mixing -UPMNS =
0.82196 0.55035 −0.14602
0.31460 −0.65324 −0.68644
0.47164 −0.51666 0.71236

Lepton masses and mixing



Thank You

Summary

‣ SM has three generations of particles which are unexplained.

‣ Fractals can account for intergenerational mixings due to complex connectivity along 


with different masses for three generations of particles due to different localizations.

‣ Sierpiński fractal with two iterations is used to account for leptons and                     
quark masses and mixings.

Aadarshsingh@iisc.ac.in

The Fractal Graphs and plots presented in this presentation are made using Mathematica and python.
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Fractal Graph Properties
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Mass Matrix

Three zero modes

λj = {5.778m,4.968m,4.968m,2.8418m,2.8418m,2.710m,1.742m,1.742m, m,0.510m,0.447m,0.447m,0,0,0}

Mass modes of fractal Mass modes spectrum



Sierpiński Fractal Properties

Masses produced as a function of f.
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Charged Leptons - f = 0.6 , {y1,y2,y3} = 0.1*{0.9,0.3,2.7}

Uncharged Leptons - f = 2.1 , {y1,y2,y3} = y{0.5,0.1,0.6}, y = O(10-10)

Down quarks - f = 1.9 , {y1,y2,y3} = {1, 0.1, 0.1}

Mixing as a function of f and y

Quarks down sector Masses 𝒪(2)GeV, 𝒪(0.1)GeV, 𝒪(5)MeV

Mixing Matrix



Linear Algebra Results
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C2 - For any matrix A with  as eigenvectors of its nullspace, the 
corresponding eigenvectors for the nullspace of matrix B are given by  
with


                                              

{v1, v2, . . . , vn}
{v′￼1, v′￼2, . . . , v′￼n}

v′￼i
j = vi

j f (−j), ∀f ∈ ℝ∖{0}

C1 - For any matrix A with a non-zero kernel space dimension, the nullity of matrix B, 
defined by the following operation, will be equal to the nullity of matrix A and hence rank 
of B will also be equal to the rank of A i.e., the original rank-nullity of A are preserved.


                                              bi,j =
ai,j

f (i−j)
, ∀f ∈ ℝ∖{0}

2409.09033 - A.Singh
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Phenomenology Feynman Diagrams



Signatures
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Fig. A

Fig. B Fig. C

Fig. D Fig. E
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Other Fractal created using Iterative Process on Graph


