

Flavours from Fractals

Aadarsh Singh

भारतीय विज्ञान संस्थान

Centre for High Energy Physics, Indian Institute of Science Bangalore

With Sudhir Vempati, A Ibarra, arXiv:hep-ph/2410.xxxxx (to appear)

25/September/2024

SM Generations SU(3) X SU(2)_L X U(1)_Y Quantum numbers Particles Masses Q_1, U_R, d_R qL d_R UR Q_2, C_R, S_R (3,2,1/3) (3,1,4/3) (3,1,-2/3) Q_3, t_R, b_R ~

Mixing

- ~ (O(1)Mev, O(1)Mev)
- VCKM wolfenstein parametrization

$$egin{array}{cccc} 1-rac{1}{2}\lambda^2 & \lambda & A\lambda^3(lpha) \ -\lambda & 1-rac{1}{2}\lambda^2 & A\lambda^3(A\lambda^3(1-
ho-i\eta) & -A\lambda^2 \end{array}$$

- ~ (O(1)Gev, O(0.1)Gev)
- $A = 0.826^{+0.018}_{-0.015},$ $\lambda = 0.22500 \pm 0.00067$, $\bar{
 ho} = 0.159 \pm 0.010$, $\bar{\eta} = 0.348 \pm 0.010$.
 - CKM mixing

(O(100)Gev, O(1)Gev)

~ (O(0.5)Mev, O(0.1)ev)

~ (O(1)Gev, O(0.1)ev)

U_{PMNS} matrix

- $0.803\sim 0.845$ $0.514\sim 0.578$ $0.233 \sim 0.505$ $0.460 \sim 0.693$
- (O(0.1)Gev, O(0.1)ev) $0.262\sim 0.525$
 - PMNS mixing

 $0.473 \sim 0.702$

"Complex"

2

Minkowski Senjanovic, Mohapatra, GellMann, Ramond, Slansky Yanagida

Seesaw models

- String models
- UED models
- etc

Neutrino Masses

There are several models in literature to explain different mass scale.

Radiative correction models

Other models also exist to explain the number of generations problem.

Consider Dirac Masses

A deeper heavier structure With O(1) parameters, leading to hierarchial parameters

Fractals – Self-similiar objects

(2)

"inspiration"

CT Hill - 0210076

- Self-similar

- Non-integer dimensions

- often formed by recursive process

- found in nature such as coastline, snowflake

- useful in various domains such as bio¹, quantum computing² etc.

Fractals are self-similar i.e, they have similar properties at different scales.

(1) - nature 628, 894-900 (2024)

(2) - nature physics 20, 1421-1428 (2024)

The idea is in "theory space"

Example with 15 vertices :

- three zero modes \Rightarrow three generations !

-localisation of the zero modes !!!

One graph for all the three generations !!

$$\begin{aligned} \mathcal{L}_{NP} = & \mathcal{L}_{kin} - \sum_{i,j=1}^{15} m_i \overline{L_i} \delta_{i,j} R_j + m \Big(\overline{L_1} q_{1,7} R_7 + \overline{L_1} q_{1,8} R_8 + \overline{L_7} q_{7,4} R_4 + \overline{L_7} q_{7,9} R_9 \\ & + \overline{L_8} q_{8,9} R_9 + \overline{L_4} q_{4,9} R_9 + \overline{L_4} q_{4,11} R_{11} + \overline{L_4} q_{4,12} R_{12} + \overline{L_9} q_{9,5} R_5 + \overline{L_5} q_{5,13} R_6 \\ & \overline{L_2} q_{2,10} R_{10} + \overline{L_2} q_{2,11} R_{11} + \overline{L_{10}} q_{10,6} R_6 + \overline{L_{10}} q_{10,12} R_{12} + \overline{L_{10}} q_{10,11} R_{11} + \overline{L_1} \\ & + \overline{L_6} q_{6,14} R_{14} + \overline{L_6} q_{6,15} R_{15} + \overline{L_3} q_{3,13} R_{13} + \overline{L_3} q_{3,14} R_{14} + \overline{L_3} q_{3,15} R_{15} + \overline{L_{13}} \\ & + m \overline{L_i} q_{i \leftrightarrow j} R_j + h.c. \end{aligned}$$

 $q_{i,i} = f^{i-j}$ with

 $R_{13} + \overline{L_5}q_{5,15}R_{15} +$ $\overline{L_{11}}q_{11,12}R_{12} + \overline{L_6}q_{6,12}R_{12}$ $\overline{}_{3}q_{13,14}R_{14} + \overline{L_{14}}q_{14,15}R_{15}$

m is universal for all nodes, three zero modes are present for all f values.

Zero Modes on the fractal graph/lattices

For f >1, O-modes are localized

on the fractal nodes.

Sierpiński Triangle Graph with Node Labels and zero modes

Higgs is coupled as per the localization of modes.

$$\mathscr{L}_{int} = -y_1 \overline{L}_4 \widetilde{H} R_4 - y_2 \overline{L}_9 \widetilde{H} R_9 - y_3 \overline{L}_{13} \widetilde{H} R_{13} + \text{h.c.}$$

Can masses and flavour mixing be explained

Lepton masses and mixing

$$U_{PMNS} = \begin{pmatrix} 0.82196 & 0.55035 & -0.14602 \\ 0.31460 & -0.65324 & -0.68644 \\ 0.47164 & -0.51666 & 0.71236 \end{pmatrix}$$

- SM has three generations of particles which are unexplained.
- quark masses and mixings.

The Fractal Graphs and plots presented in this presentation are made using Mathematica and python.

Summary

Fractals can account for intergenerational mixings due to complex connectivity along with different masses for three generations of particles due to different localizations.

Sierpiński fractal with two iterations is used to account for leptons and

THANK YOU

Back Up Slides

Fractal Graph Properties

	2m	mf	mf^2	0	0	0	0	0	0	0	0	0	0	0	0)
	$\frac{m}{f}$	2m	mf	mf^2	mf^3	0	0	0	0	0	0	0	0	0	0
	$\frac{\dot{m}}{f^2}$	$\frac{m}{f}$	2m	0	mf^2	mf^3	0	0	0	0	0	0	0	0	0
	0	$\frac{\dot{m}}{f^2}$	0	2m	mf	0	mf^3	mf^4	0	0	0	0	0	0	0
	0	$\frac{m}{f^3}$	$\frac{m}{f^2}$	$\frac{m}{f}$	2m	mf	0	0	0	0	0	0	0	0	0
	0	0	$\frac{f}{f^3}$	Ő	$\frac{m}{f}$	2m	0	0	mf^3	mf^4	0	0	0	0	0
	0	0	0	$\frac{m}{f^3}$	Ő	0	2m	mf	0	0	mf^4	mf^5	0	0	0
$M_0 =$	0	0	0	$\frac{f}{f^4}$	0	0	$\frac{m}{f}$	2m	0	0	0	mf^4	mf^5	0	0
	0	0	0	0	0	$\frac{m}{f^3}$	Ő	0	2m	mf	0	0	0	mf^5	mf^6
	0	0	0	0	0	$\frac{f}{f^4}$	0	0	$\frac{m}{f}$	2m	0	0	mf^3	mf^4	0
	0	0	0	0	0	Ő	$\frac{m}{f^4}$	0	Ő	0	2m	mf	0	0	0
	0	0	0	0	0	0	$\frac{m}{f^5}$	$\frac{m}{f^4}$	0	0	$\frac{m}{f}$	2m	mf	0	0
	0	0	0	0	0	0	٥	$\frac{m}{f^5}$	0	$\frac{m}{f^3}$	Ő	$\frac{m}{f}$	2m	mf	0
	0	0	0	0	0	0	0	Ő	$\frac{m}{f^5}$	$\frac{m}{f^4}$	0	Ó	$\frac{m}{f}$	2m	mf
	0	0	0	0	0	0	0	0	$\frac{m}{f^6}$	0	0	0	Ó	$\frac{m}{f}$	2m

Mass Matrix

$$\Lambda_{iR} = \begin{pmatrix} 0 & \frac{1}{f^{12}} & -\frac{1}{f^{11}} & 0 & -\frac{1}{f^9} & \frac{2}{f^8} & 0 & 0 & -\frac{1}{f^5} & -\frac{1}{f^4} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{f^9} & -\frac{1}{f^8} & \frac{1}{f^7} & 0 & -\frac{1}{f^5} & 0 & -\frac{1}{f^3} & 0 & 0 & 1 \\ 0 & -\frac{1}{f^{10}} & \frac{1}{f^9} & \frac{2}{f^8} & -\frac{1}{f^7} & 0 & -\frac{1}{f^5} & -\frac{1}{f^4} & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

 $\lambda_j = \{5.778m, 4.968m, 4.968m, 2.8418m, 2.8418m, 2.710m, 1.742m, 1.742m, m, 0.5m, 0.5m,$

Mass modes of fractal

$$\Lambda_{iL} = \begin{pmatrix} 0 & f^{12} & -f^{11} & 0 & -f^9 & 2f^8 & 0 & 0 & -f^5 & -f^4 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & f^9 & -f^8 & f^7 & 0 & -f^5 & 0 & -f^3 & 0 & 0 & 1 & 0 \\ 0 & -f^{10} & f^9 & 2f^8 & -f^7 & 0 & -f^5 & -f^4 & 0 & 0 & 0 & 1 & 0 & 0 \\ \end{bmatrix}$$

$$Three zero modes$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$510m, 0.447m, 0.447m, 0.0, 0\}$$

Mass modes spectrum

11

0

0

Sierpiński Fractal Properties

Masses produced as a function of f.

Charged Leptons - f = 0.6, $\{y_{1,y_{2,y_{3}}\} = 0.1^{*}\{0.9, 0.3, 2.7\}$ Uncharged Leptons - f = 2.1, $\{y_{1,y_{2,y_{3}}\} = y_{\{0.5,0.1,0.6\}}, y = O(10^{-10})$ Down quarks - f = 1.9, $\{y_{1}, y_{2}, y_{3}\} = \{1, 0.1, 0.1\}$ Quarks down sector — Masses O(2)GeV, O(0.1)GeV, O(5)MeV

Mixing Matrix

Mixing as a function of f and y

Linear Algebra Results

C1 - For any matrix A with a non-zero kernel space dimension, the nullity of matrix B, defined by the following operation, will be equal to the nullity of matrix A and hence rank of B will also be equal to the rank of A i.e., the original rank-nullity of A are preserved.

$$b_{i,j} = \frac{a_{i,j}}{f^{(i-j)}},$$

C2 - For any matrix A with $\{v^1, v^2, \ldots, v^n\}$ as eigenvectors of its nullspace, the with

$$v_j^{'i} = v_j^i f^{(-j)},$$

$\forall f \in \mathbb{R} \setminus \{0\}$

2409.09033 – A.Singh

corresponding eigenvectors for the nullspace of matrix B are given by $\{v'^1, v'^2, \ldots, v'^n\}$

 $\forall f \in \mathbb{R} \setminus \{0\}$

Phenomenology Feynman Diagrams

Signatures

Other Fractal created using Iterative Process on Graph

Fig. A

Fig. D

Fig. C

(D)

Fig. E

16

